Recent Advances 1n Vision Foundation Models
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9:00-9:20 Opening Remarks Lijuan Wang

9:20-10:10 Large Multimodal Models: Towards Building General-Purpose Multimodal Assistant Chunyuan Li
10:10-11:00 Methods, Analysis & Insights from Multimodal LLM Pre-training Zhe Gan

11:00- 11:50 LMMs with Fine-Grained Grounding Capabilities Haotian Zhang
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13:00-13:50 A Close Look at Vision in Large Multimodal Models Jianwei Yang

13:50- 14:40 Multimodal Agents Linjie Li

14:40 - 15:00 Coffee Break & QA
15:00-15:50 Recent Advances in Image Generative Foundation Models Zhengyuan Yang

15:50-16:40 Video and 3D Generation Kevin Lin

16:40-17:00 Closing Remarks & QA
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55min Generalizable VLN Methods  [Video] [Slides] Xin Eric Wang

3:10 - 3:40 Text-to-image Synthesis presented by Yu Cheng ( Slides , YouTube , Bilibili )
Forward to Realistic VLN  [Video] [ Slides] Yoav Artzi and Peter Anderson

3:40 - 4:00 Coffee Break

) - ) o 15min VLN Summary [Video] [Slides] Qi Wu
4:00 - 5:00 Self-supervised Learning presented by Licheng Yu, Linjie Li and Yen-Chun Chen ( Slides , YouTube , Bilibili )
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16:00-17:00 Panel Discussion (o)) LIVEon Zoom [Video] All speakers
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9:00-9:15 Opening Remarks  [Bilib uTube Lijuan Wang
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10:20-11:00 Alignments in Text-to-Image Generation
13:00-13:30 Overview of Video-Text Pre-training [ Slides] [Bilibili, YouTube] Kevin Lin

13:30- 14:00 Learning from Multi-channel Videos: Methods and Benchmarks [ ] [Bilibili, Yol . Linjie Li 11:00-11:40 Lal’ge Multimodal Models [ »

14:00-14: 30 Advanced Topics in Video-Text Pre-training [ Slides] [Bilibili, YouTube] Chung-Ching Lin 11:40-12:10 Multimodal Agents: ChainingMuItimodaI Experts with LLMs [";j id

14:30- 14:45 Coffee Break & QA
14:45-15:15 VLP for Image Classification [ Slides] [Bilibili, YouTube] Jianwei Yang 12:10-12:30 Q&A
15:15-15:45 VLP for Object Detection [ Sl ][ , Y ] Pengchuan Zhang

15:45 - 16:15 Benchmarks for Computer Visioninthe Wild [ Slides] [Bilibili, YouTube] Chunyuan Li

16:15-17:00 VLP for Text-to-Image Synthesis  [S ] [Bilibili, [ ] Chenfei Wu

17:00-17:15 Q&A

https://vilp-tutorial.github.io/



https://vlp-tutorial.github.io/

Check out our survey paper

Vision-Language Pre-training:

2023

Basics, Recent Advances, and Future Trends

Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu, Jianfeng Gao

Microsoft Corporation

{zhgan,linjli,chunyl,lijuanw,zliu, jfgao}@microsoft.com

VQA & Visual Reasoning
Q: What is the dog holding with its paws?
A: Frisbee.

Text-to-Image Retrieval
Query: A dog is lying on the grass next
to a frisbee.

Negative Images
¥ ¢ -

Text-to-Video Retrieval
Query: A dog is lying on the grass next to
a frisbee, while shaking its tail.

Negative Videos

—
..'.

Video Question Answerin,
Q: Is the dog perfectly still?
A: No.

Figure 1.2: Illustration of representative tasks from three categories of VL problems covered in this

Image Captioning
Caption: A dog is lying on the grass next
to a frisbee.

Video Captioning
Caption: A dog is lying on the grass next

to a frisbee, while shaking its tail.

w

Image Classification
Labels: [dog, grass, frisbee]

Object Detection

paper: image-text tasks , vision tasks as VL problems , and video-text tasks .

dog, grass, frisbee
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Check out our survey paper

Multimodal Foundation Models:

2024

From Specialists to General-Purpose Assistants

Chunyuan Li*®, Zhe Gan*, Zhengyuan Yang*, Jianwei Yang*, Linjie Li*,
Lijuan Wang, Jianfeng Gao
Microsoft Corporation
{chunyl,zhgan,zhengyang, jianwyan,linjli,lijuanw, jfgao}@microsoft.com
* Core Contribution * Project Lead
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Recent Advances in Vision Foundation Models

« Looking back, CLIP was a big paradigm shift

« LMMs extends LLMs with multi-sensory skill to achieve generic intelligence

 Diffusion model as a vision-centered representation learner



CLIP was a Big Paradigm Shift

Rather than needing handcrafted labels to train a good classifier for a given domain, we can leverage free-
form text from the internet to learn a model that is a good classifier for all domains

(1) Contrastive pre-training (2) Create dataset classifier from label text
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Alec Radford, etc. Learning Transferable Visual Models From Natural Language Supervision. https://arxiv.org/abs/2103.00020 26 Feb. 2021
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https://arxiv.org/abs/2103.00020

Recent Advances in Vision Foundation Models

« LMMs extends LLMs with multi-sensory skill to achieve generic intelligence
* Prelude of LMMs (Early Vision-Language Models, Flamingo, CoCa, GIT)
* The dawn of LMMs starts from GPT-4V
« Landscape of open-source and proprietary LMMs
* New research areas: Grounding LMMs, Visual prompting, Multimodal Agent



Prelude of LMMs (Early Vision-Language Models)

* Early VLP models depend on pre-trained object detectors to extract visual
features offline.

* Newer end-to-end VLP models achieve stronger performance with model
and data scaling.

* Upscaled VLP models demonstrate new capabilities such as in-context
learning and multimodal few shots.

VIiLBERT UNITER VinVL CLIP  ALBEF PICa UNICORN GLIP Flamingo GIT
o3 = BB Microsoft ¥ Microsoft GopenAr S B® Microsoft B% Microsoft @& Microsoft ) DeepMind B Microsoft

Dec. 7th, 2021 Apr. 29th, 2022| May. 27th, 2022

LXMERT OSCAR  ALIGN Frozen SimVLM  METER LEMON OFA CoCa
M s Q8 Microsoft  Google @) DeepMind Google  BH Microsoft Bl Microsoft £2_#4% Google Research

.......

Credit: CVPR 2022 Tutorial on Vision Foundation Models



The Era of LMMs starts from GPT-4V

The Dawn of LMMs:
Preliminary Explorations with GPT-4V (ision)

Zhengyuan Yang*, Linjie Li*, Kevin Lin*, Jianfeng Wang*, Chung-Ching Lin"*,
Zicheng Liu, Lijuan Wang*#
Microsoft Corporation

* Core Contributor * Project Lead

“The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)” work
from our colleagues at Microsoft covers a plethora of practical observations
and strategies for using GPT-4V.

https://openai.com/contributions/gpt-4v/
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GPT-4V Emerging Capability Highlights

(0810128 Please describe the image and answer the question (I3 Compare Image 1 and image 2, tell me about the
shown in the image. differences between image 1 and image 2.

e LMM emergent capabilities — .

What does the arrow point to?

The Dawn of LMMs: ) = \

Preliminary Explorations with GPT-4V(ision) 9y K d

Zhengyuan Yang®, Linjie Li*, Kevin Lin®, Jianfeng Wang*, Chung-Ching Lin®, GPT.V
. = s > n
Zldmthk r:::ﬁléuo:;: :‘::: The image shows a sock, a soccer ball, a tennis ball, a running [ B 1 image 1 has spikes an its back while image 2 does not.
shoe, and a skateboard. The arrow is pointing to the running 2. Image 2 has a tail while image 1 does not.
* Core Contributar *® Project Lead shoe. So, the answer is that the arrow points to a running 3. Image 2 has a mouth with teeth while Image 1 does not have
shoe. a maouth

Abseac Visual Pointing Spot the Difference

Large multimodal models (LMMs) extend large language models (LLMs) with
multi-sensory skills, such as visual understanding, to achieve stronger generic in-
telligence. In this paper, we analyze the latest model, GPT-4V(ision) (99101, 1],
to decpen the understanding of LMMs, The analysis focuses on the intriguing
tasks that GPT-4V can perform, containing test samples to probe the quality and
genericity of GPT-4V's capabilities, its supported inputs and working modes, and
the effective ways to prompt the model. In our approach to exploring GPT-4V,
we curate and organize a collection of carefully designed qualitative samples
spanning a variety of domains and tasks. Observations from these samples demon-
strate that GPT-4V's unprecedented ability in processing arbitrarily interleaved
multimodal inputs and the genericity of its capabilitics together make GPT-4V a
powerful multimodal generalist system. Furthermore, GPT-4V''s unique capability
of understanding visual markers drawn on input images can give rise to new human-
computer interaction methods such as visual referring prompting. We coaclude the
report with in-depth discussions on the emerging application scenarios and the fu-
ture rescarch directions for GPT-4V-based systems. We hope that this preliminary >
exploration will inspire future research on the next-generation multimodal task (& G B\M The circled person is sitting on a bench and then stands up and adjusts his shirt.
formulation, new ways to exploit and enhance LMMs to solve real-world problems,

and gaining better understanding of multimodal foundation models. Finally, we

acknowledge that the model under our study is solely the product of OpenAl's

innovative work, and they should be fully credited for its development. Please

L i e e oot st Interleaved Image-text Sequence

[1] "The Dawn of LMMs: Preliminary Explorations with GPT-4V (ision)."



GPT-4V Emerging Capability Highlights

Genericity

The Dawn of LMMs:
Preliminary Explorations with GPT-4V(ision)

Zhengyuan Yang®, Linjie Li*, Kevin Lin®, Jianfeng Wang*, Chung-Ching Lin®,
Zicheng Liu, Lijuan Wang**
Microsoft Corporation

* Core Cortributor  * Project Lead

Abstract

Large multimodal models (LMMs) extend large language models (LLMs) with
multi-sensory skills, such as visual understanding, to achieve stronger generic in-
lclligcncc In this paper, we analyze the latest model, GPT-4V(ision) [99-101, 1]',
tod the und g of LMMs, The analysis focuses on the intriguing
tasks that GPT-4V can pcrform. containing test samples to probe the quality and
genericity of GPT-4V's capabilities, its supported inputs and working modes, and
the effective ways to prompt the model. In our approach to exploring GPT-4V,
we curate and organize a collection of carefully designed qualitative samples
spanning a variety of domains and tasks. Observations from these samples demon-
strate that GPT-4V's unprecedented ability in processing arbitrarily interleaved
multimodal inputs and the genericity of its capabilitics together make GPT-4V a
powerful multimodal gencralist system. Furthermore, GPT-4V's unique capability
of understanding visual markers drawn on input images can give rise to new human-
computer interaction methods such as visual referring prompting. We coaclude the
report with in-depth discussions on the emerging application scenarios and the fu-
ture rescarch directions for GPT-4V-based systems. We hope that this preliminary
exploration will inspire future research on the next-generation multimodal task
formulation, new ways to exploit and enhance LMMs to solve real-world problems,
and gaining better understanding of multimodal foundation models. Finally, we
acknowledge that the model under our study is solely the product of OpenAl's
innovative work, and they should be fully credited for its development. Please
see the GPT-4V contributions paper [101] for the aulhomhxp and cm.hl attribution:

https://cdn.openai.com ributions/gpt .pdf.

|05 0118 Please read the table in this image and return a
markdown-style reconstructed table in text.
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Table, GUI, Coding, Video, Grocery, Embodied, etc.

[1] "The Dawn of LMMs: Preliminary Explorations with GPT-4V (ision)."



Evolution of LMMs (a surge of Open Source LMMs since GPT-4V)

March April May June
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Credit: CVPR 2023 Tutorial on Vision Foundation Models



Landscape of LMMs (Open-Source LMMs and Proprietary LMMs)

Human Expert Open-Source Proprietary
Reset Size Date Overall Art & Design Business Science Health & Medicine Human. & Social Sci. Tech & Eng.
Human Expert (Best) = 2024-01-31 88.6 89.2 90.7 90.0 87.3 89.2 86.2
Human Expert (Medium) = 2024-01-31 82.6 84.2 86.0 84.7 78.8 85.0 79.1
Human Expert (Worst) = 2024-01-31 76.2 80.8 78.0 78.0 733 74.2 74.3

On MMMU leaderboard GPrto* s e _ _ _ _ _ :
° 30 O pen_sou rce LM MS Gemini 1.5 Pro* . 2024-05-31 62.2 . i ) ) ) _

. Gemini 1.0 Ultra* . 2023-12-11 59.4 70.0 56.7 48.0 67.3 783 47.1
¢ 2 1 P ro pr I eta ry L M M S Claude 3 Opus* . 2024-03-05 59.4 67.5 67.2 48.9 61.1 70.0 50.6
GPT-4V(ision) (Playground) - 2023-11-27 56.8 65.8 59.3 547 64.7 72.5 36.7
--as Of 6 / 1 3 / 20 2 4 Reka Core* . 2024-04-23 56.3 75.9 473 49.3 58.0 75.0 a4.2
Gemini 1.5 Flah* - 2024-05-31 56.1 - - - - - -
SenseChat-Vision-0423-Preview* . 2024-04-23 54.6 66.7 54.0 453 53.3 75.0 43.8
Reka Flash* 5 2024-04-23 53.3 61.7 427 47.3 59.3 74.2 443
Claude 3 Sonnet* . 2024-03-05 53.1 61.7 58.2 37.1 57.1 68.7 45.0
HPT Pro* 5 2024-03-15 52.0 66.7 433 42.7 50.7 72.5 43.8
VILA1.5% - 2024-05-04 51.9 60.8 433 36.0 57.3 73.3 48.1
InternVL-Chat-V1.2* 5 2024-02-23 51.6 62.5 40.7 39.3 58.7 70.0 46.2
Qwen-VL-MAX* - 2024-01-27 51.4 72.5 433 40.0 58.0 69.2 38.6
Skywork-VL* . 2024-05-30 51.4 66.7 413 38.7 55.3 68.3 46.7
LLaVA-1.6-34B * 348 2024-02-01 51.1 67.5 46.0 39.3 52.0 67.5 43.8
Claude 3 Haiku* . 2024-03-05 50.2 60.8 52.5 37.1 52.3 66.0 415
Adept Fuyu-Heavy* 5 2024-01-31 483 53.4 463 33.7 51.3 72.2 44.0
Gemini 1.0 Pro* . 2023-12-11 47.9 - - . - - -
Marco-VL-Plus* 5 2024-03-09 46.2 60.8 373 35.3 48.7 69.2 37.1
14

X. Yue, Y.Ni, K. Zhang, T. Zheng, R. Liu, G. Zhang, S. Stevens, etc. MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI, https://arxiv.org/abs/2311.16502



Rapid Progress in LMMs

MM-=Vet: Evaluating integrated vision-language capabilities

GPT-40: 69.3

M GPT-4V: 67.7 *

Mini-Gemini-HD=BS@®

CogVLM(Vicuna-7B) InternVL 1.5: 62.800

70

W 20
o
@]
|}
240
T Emu-14B LLaVA-65B (‘D'ata Mixing)
E LLaMA-Adapter v2-7B

30

MiniGPT-4-1%4B
BLIP-2-12B —
O
20
10
Mar '23 May '23 Jul 23 Sep '23 Nov '23 Jan '24 Mar '24 May '24

Other models -o- Models with highest GPT-4 score

[1] Yu, Weihao, et al. "Mm-vet: Evaluating large multimodal models for integrated capabilities." ICML 2024 https://github.com/yuweihao/MM-Vet



https://github.com/yuweihao/MM-Vet

/0 Modality of GPT-40  ©0penAT

GPT-40 (“0” for “omni”) is a step towards much more natural
human-computer interaction—it accepts as input any combination
of text, audio, image, and video and generates any combination of
text, audio, and image outputs.

It would be interesting to investigate what additional capabilities a
model combining all these modalities could achieve beyond current
capabilities and how to make the native integration efficient so that
different modalities enhance each other.

https://openai.com/index/hello-gpt-40/

16



LMM inspired new research area -- Visual Prompting

Input: Image + SoM
P Input: [mage + SoM _ N

Bye

-~
.

| -

9

are closest to the windowed wall. X /

e A
. P,

User What is on the left side of the right laptop? User What is on the left side of the right laptop?
GPT-4V  On the left side of the right laptop, there is a GPT-4V  On the left side of the right laptop

cup or mug. X (numbered as 9), there is a lamp, which is

numbered as 12. ./

User | want to find a seat close to windows, User Iwant to find a seat close to windows,

where can | sit? where can | sit?

You can sit on either of the two black You can sit on the chair numbered as 7. It's
GPT-4V  chairs in front of the white desks, as they GPT-4V  the closest seat to the windows

-

(represented by the area numbered as 1). \ﬂ

[1] Yang, Jianwei, et al. "Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V "

https://som-gpt4v.github.io/



https://som-gpt4v.github.io/

LMM inspired new research area — Multimodal Agent

Agents with Multimodal Memory /am;\
@ MM-Narrator u; MM-Vid i |' Audio Description
Actionable Agents
=000

——0o0 =000 . .

MM-Navigator VideoGUI IE GUI Navigation
Agent with Feedback \; 3

s W Visual Design &

?;é\: Laeaz/mg -l * Creation



Recent Advances in Vision Foundation Models

* The past year was the year of LMMs
* Prelude of LMMs (Early Vision-Language Models, Flamingo, CoCa, GIT)
* The era of LMMs starts from GPT-4V
« Landscape of open-source and proprietary LMMs
e Session 1: LLaVA and LMMs by Chunyuan Li
e Session 2: LMMs pre-training by Zhe Gan

* New research areas: Grounding LMMs, Visual prompting, Multimodal Agent

e Session 3: LMMs Grounding by Haotian Zhang
e Session 4: Visual prompting by Jianwei Yang .
e Session 5: Multimodal agent by Linjie Li
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Recent Advances in Vision Foundation Models

 Diffusion model as a vision-centered representation learner
* Your diffusion model is secretly a zero shot classifier
* DALL-E 3: reconstruct image from ultra-descriptive caption
« SORA: video generation models as world simulators

20



Your Diffusion Model is Secretly a Zero-Shot Classifier

Text conditioning c:

a photo of a {class name} Classification Objective
argmin (IEt,e[Heg(xt, c) — e||2])
(&
Input Image x \\ R 2
KV KV
Q Q
/

Pl | Xt Diffusion Model

Sample € ~ N (0, 1) L__a_rrip_e____[___] _______________________________________

Figure 1. Overview of our Diffusion Classifier approach: Given an input image x and a set of possible conditioning inputs (e.g., text for
Stable Diffusion or class index for DiT, an ImageNet class-conditional model), we use a diffusion model to choose the one that best fits this
image. Diffusion Classifier is theoretically motivated through the variational view of diffusion models and uses the ELBO to approximate
log pe(x | c). Diffusion Classifier chooses the conditioning c that best predicts the noise added to the input image. Diffusion Classifier
can be used to extract a zero-shot classifier from Stable Diffusion and a standard classifier from DiT without any additional training.

Alexander C. Li, etc., Your diffusion model is secretly a zero-shot classifier. https://arxiv.org/abs/2303.16203. 28 Mar 2023
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https://arxiv.org/abs/2303.16203
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DALL-E 3: Reconstruct Image from Ultra-descriptive Caption ©0penAT

. Golden hour illuminates

blooming cherry blossom trees

around a pond.

Coreresearch and execution
Gabriel Goh, James Betker, Li Jing, Aditya Ramesh
Research contributors—primary

Tim Brooks, Jianfeng Wang, Lindsey Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Prafulla Dhariwal, Casey
Chu, Joy Jiao

Research contributors—secondary

Jong Wook Kim, Alex Nichol, Yang Song, Lijuan Wang, Tao Xu

https://openai.com/index/dall-e-3/

“Golden hour illuminates blooming cherry blossom
trees around a pond.

In the distance, a building with Japanese-inspired
architecture is perched on the lake.

In the pond, a group of people enjoying the serenity
of the sunset in a rowboat.

A woman underneath a cherry blossom tree is setting
up a picnic on a yellow checkered blanket.”

e Takeaway from DALL-E 3: training on ultra-
descriptive captions makes the model more
compute-efficient, even when we measure the
quality of samples produced with shorter captions

e Suggests that we can get better unconditional
models by using UD captions as scaffolding, even if
we don’t use UD captions at inference

-- Aditya Ramesh
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Video Generation Models as World Simulators

Google 0 Meta Al @ openAl

VDM 2022 Emu Video 2023 Sora 2024 Timeline

SORA: Our results suggest that scaling video generation models is a promising path towards building general purpose simulators of the physical world.

24

https://openai.com/index/video-generation-models-as-world-simulators/



Recent Advances in Vision Foundation Models

 Diffusion model as a vision-centered representation learner
 Your diffusion model is secretly a zero shot classifier
« DALL-E 3: reconstruct image from ultra-descriptive caption
« SORA: video generation models as world simulators
e Session 6: Image Generation by Zhengyuan Yang
e Session 7:Video and 3D Generation by Kevin Lin




Morning Session

9:00-9:20 Opening Remarks Lijuan Wang

9:20-10:10 Large Multimodal Models: Towards Building General-Purpose Multimodal Assistant Chunyuan Li
10:10-11:00 Methods, Analysis & Insights from Multimodal LLM Pre-training Zhe Gan

11:00- 11:50 LMMs with Fine-Grained Grounding Capabilities Haotian Zhang

Afternoon Session
13:00-13:50 A Close Look at Vision in Large Multimodal Models Jianwei Yang

13:50- 14:40 Multimodal Agents Linjie Li

14:40 - 15:00 Coffee Break & QA
15:00-15:50 Recent Advances in Image Generative Foundation Models Zhengyuan Yang

15:50-16:40 Video and 3D Generation Kevin Lin

16:40-17:00 Closing Remarks & QA

“a ‘3‘)

Chunyuan Li Zhe Gan Haotian Zhang Jianwei Yang Linjie Li Zhengyuan Yang Kevin Lin

Jianfeng Gao Lijuan Wang

Tiktok Apple Apple Microsoft Microsoft Microsoft Microsoft Microsoft

Microsoft



Recent Advances 1n Vision Foundation Models

In conjunction with CVPR 2024
J REUE 17102024 (9 a.m. PDT — 5 p.m. PDT)
| ocation: Summit 437- 439, Seattle Convention Center
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