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Why Embodied AI Agents?

• Domestic Robot• Autonomous Driving • Industry Robot

People have been dreaming of having autonomous AI 
agents help to handle tedious tasks in the daily life
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What is an Embodied AI Agent?
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What is an Embodied AI Agent?

Wikipedia: An intelligent agent is an entity that perceive its 

environment, takes actions autonomously to achieve goals, 

and may improve its performance through machine learning 
or by acquiring knowledge.
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What is an Embodied AI Agent?

Environments

Take multi-sensory inputs, e.g, 
vision, tactile, etc., to 
understand the environment

Take actions to interact and 
manipulate the environment 
for the goal
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The Dawn of Multimodal AI Agents OpenVLA
TraceVLA
LAPA.
Embodied-CoT
Pi0/0.5
GROOT-0
Magma
LLaRA
ChatVLA
CoVLA

RT-1
RT-2
RT-2X
SmoVLA
TinyVLA
SpatialVLA
AGIBot
RoboBrain
Magma
Helix

SeeClick
GUI Narrator
Agent Q
Webpilot
AutoGLM
OSCAR
Operator

WebArena 
WebAgent
CogAgent
Auto-GUI
MM-Navigator
UFO
SeeAct

And many 
more…

And many 
more…
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How far we have gone?

Model: Up to 1000B parameters!?
Data: 10B images and 100T tokens

Model: < 1B parameters
Data : up to 1B images

Model: < 1B parameters
Data: < 10M images

Vision-Language Pre-training: Basics, Recent Advances, and Future Trends. Gan et al.

Multimodal Foundation Models: From Specialists to General-Purpose Assistants. Li et al.
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(My) Path Towards Multimodal Embodied AI Agents

Multimodal Vision 
Foundation

Multimodal 
LLM

Embodied Agent

See Think Act
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(a) Inputs Types:
• Temporality: static image, video sequence
• Extra modality: text, audio, etc.

(b) Diverse Tasks:
• Image-level: classification, captioning, etc.
• Region-level: object detection, grounding, etc.
• Pixel-level: segmentation, depth est.. etc.

(c) Output types:
• Semantic: class labels, descriptions, etc.
• Spatial: edges, boxes, masks, etc.
• Temporal: traces, optical flows, etc.

Vision is Complicated
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Recognize (all) object categories in the wild
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Image is a label

CIFAR-10 (10 labels) Autonomous Robot Indoor Dataset (ARID)



Microsoft Research

Image is a text

OpenAI CLIP
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Text

Language-Image 

Learning

• CLIP
• ALIGN

Image

Label

Supervised 

Learning

• CE
• SupCon

Image

Label 1 1 2 2

Text
Two parrots 
perching on 
a tree branch 

A black 
cat is 
sleeping 
on a 
computer

A white 
dog 
sitting on 
a couch

A dog 
looking 
bashfully 
to the side

Image

• UniCL
Language-Image-Label Learning

Leverage both types of  data

Discriminative features for image classification tasks

Broad semantic coverage for open-world scenarios

Learning in the image-label-text space
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Project Florence

State-of-the-art on 44 vision benchmarks
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From Image, to Region, to Pixel

Prompt: Smaller girl Prompt: Black dog

Prompt: Stroke Prompt: Point

GLIP. 2022

Grounding-DINO. 2022

SEEM. 2023
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What Vision Foundation Can Give Us?

Vision Foundation
Multimodal 

LLM Embodied Agent

See Think Act
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What Vision Foundation Can Give Us?

Vision Foundation
Multimodal 

LLM Embodied Agent

See Think Act

• Open-vocabulary
• Spatially grounded
• Versatile inputs & outputs

A multimodal vision 
model can effortlessly 
apply in the wild
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Multimodal Large Language Models

GPT-4V. OpenAI, 2023
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The Progression of LMMs

Li et al. Multimodal foundation models: From specialists to general-purpose assistants
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• Stage 1 (Alignment) • Stage 2 (Instruction Following)

Train only the projection weight W using 
image-text pairs.

Training cost is as low as taking a few 
hours on 8xA100 GPUs

Tune the projection and LLMs using 
instruction-following data.

Training cost is as low as taking less than 
1 day on 8xA100 GPUs

Visual Instruction Tuning: LLaVA-1.0
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A Cheap Reproduction of GPT-4V
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A 4.2B Multimodal LLMs that can understand 
and reason about real-world images, excels 

particularly on chart and diagram



Microsoft Research

Multimodal Vision Model  is 
spatially grounded but not 
thinking 

Multimodal Large Language 
Model is thinking but not 
spatially grounded

Can we reconcile them?



Microsoft Research Yang et al. Set-of-mark prompting unleashes extraordinary visual grounding in gpt-4v

Visual Prompting with Set-of-Marks
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Visual Prompting

Visual Prompting with Set-of-Marks
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Application of SoM for Robotics

Grasping 
Grounding

Grasping 
Planner



Microsoft Research PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs

Application of SoM for Robotics
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What MLLM can give us?

Vision Foundation
Multimodal 

LLM Embodied Agent

See Think Act

• Open-vocabulary
• Spatially grounded
• Versatile inputs & outputs

A multimodal vision 
model can effortlessly 
apply in the wild

• Understand and reasoning
• Free-form instruction
• Think spatially on image

A MLLM can understand 
the instruction and ground 
on the observations
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Vision-Language-Action Model

OpenVLA: An Open-Source Vision-Language-Action Model. Kim et al.
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Vision-Language-Action Model

OpenVLA: An Open-Source Vision-Language-Action Model. Kim et al.

Impressive Generalist Policy, 

working out of the box
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Some Obvious Shortcomings
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Some Obvious Shortcomings

(a) A single image is not 
sufficient to capture 

the historical 
observations
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Some Obvious Shortcomings

(a) A single image is not 
sufficient to capture 

the historical 
observations

(b) Action prediction is 
shortsighted and has 
limited annotations
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Some Obvious Shortcomings

(a) A single image is not 
sufficient to capture 

the historical 
observations

(c) Training only on robotics data (image + goal-
>action token) may lead to overfit and lose the 

multimodal understanding and other capabilities

(b) Action prediction is 
shortsighted and has 
limited annotations
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Some Obvious Shortcomings

(a) A single image is not 
sufficient to capture 

the historical 
observations
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TraceVLA: Visual Trace Prompting for VLA

(a) A single image is not 
sufficient to capture 

the historical 
observations
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TraceVLA: Visual Trace Prompting for VLA
We curated our own 
trajectories from OXE

1

Two images as inputs, one 
original and one prompted2

TraceVLA. Zheng et al.
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How to encode historical information?

Intuition: A better understanding of the history 
facilitates better prediction of the future actions

Multi-Images

• Significantly increase the 
number of visual tokens 
to VLA.

• Vision encoder can hardly 
capture the subtle 
changes or motions 
across adjacent frames.

Text Prompt

• Easy to use but can 
hardly  capture the fine-
grained movement.

• Model is difficult to 
ground the textual 
description with spatial-
temporal observation.

Visual Prompt

• Prove to be effective, e.g., 
Set-of-Mark (SoM) for 
static image.

• Naturally ground the 
current observation and 
history spatially and 
temporally.

TraceVLA. Zheng et al.
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Point trace captures the spatial-temporal dynamics

CoTracker is used to extract the motion traces for keypoints on both objects and robot arms.
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TraceVLA: Visual Trace Prompting

Step 1: Extract visual traces from video sequence Step 2: Overlay visual traces on top of the image visually

TraceVLA. Zheng et al.
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SimplerEnv Google Robot Tasks

TraceVLA outperforms OpenVLA with clear margin across various domains

TraceVLA. Zheng et al.



Playback Speed: X8WidowX 250 Robot Arm
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Real Robot Manipulation Evaluation

TraceVLA. Zheng et al.

Seen tasks

Unseen tasks
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Open X-Embodiment

Open X-Embodiment is the largest open-sourced real robotics datasets, but:
1. Object categories and diversity are limited.
2. Less to no environment variations for each embodiment.
3. Not easy to scale up (collecting real robot data is a headache).
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Motivation

Latent Pretraining from Videos. Ye et al.
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Pretraining Pipeline

Model arch.: C-ViViT as the video tokenizer

Training method.: VQ-VAE + NSVQ

Model arch.: Large World Model (LWM-7B)

Training method: Next latent/real action token prediction

Latent Pretraining from Videos. Ye et al.
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Interpreting Latent Action
Language Table
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Interpreting Latent Action

Human Video Input

For realistic video input, the action is still interpretable but 
generated future frames are much blurred
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Training and Evaluation Environments

Latent Pretraining from Videos. Ye et al.
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LAPA Learns from Human Videos

* We used sthv2 as the human instructional videos

LAPA learned from human videos shows promising results for robotics tasks 
It significantly outperforms model trained from scratch 

Still a gap with the model pretrained on robotics data w/ or w/o action labels

Latent Pretraining from Videos. Ye et al.
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Seen Objects, Unseen Combinations

Scratch OpenVLA LAPA

Knock mustard down
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Seen Objects, Unseen Combinations

Knock an object for cleaning

Scratch OpenVLA LAPA
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Can we build a single foundation model for both multimodal 
understanding and action prediction?

1

How to endow both verbal and spatial intelligence for the 
model? How do we scale up our embodied pretraining? 

2

Human as an embodied agent do not only produce actions

Not fall back to build a specialized model that only produce action or textual tokens
A good understanding should be beneficial to action-taking, and vice versa

Video is definitely a good source to learn (as shown our LAPA as well)!
How to transfer the spatially grounded thinking to spatially grounded action?
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Poster Location: ExHall D Poster #340, June 14
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Set-of-Mark for Action Grounding

Set-of-Mark: SoM can significantly reduce the search space to take actions, e.g., click 
a button on the screenshot
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Trace-of-Mark for Action Planning

Trace-of-Mark forces the model to learn a longer horizon by predicting distant future 
“actions”, and more importantly, provides an effective way to leverage unlabeled video data.



Microsoft Research

Motions are great “action” supervisions, if processed properly

Human is a great instructor for embodied agents
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Trace-of-Mark Generation for Videos in the Wild
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Pretraining on a collection of Images, Videos and Robotics Data

39M Pretraining Data: instructional videos, robotics manipulation, UI navigation, and multimodal understanding.

We apply SoM and ToM for different data types, with SoM enabling unified action grounding across all modalities 
while ToM is applied to video and robotics data.
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Magma Pretraining 

(a ) Vision Encoder: ConvNeXt-XXLarge
(b) Language Model: Llama-3-8B

Setup: Pretraining from scratch for 3 
epochs on the whole pretraining data
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Magma Pretraining 
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Robot Planning Scaling Property

Training Data: 2/3 Training Data: FullTraining Data: 1/3

Effect of Data Scaling
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Robot Planning Scaling Property

Training Data: 2/3 Training Data: FullTraining Data: 1/3

Effect of Data Scaling

Put the chip bag to coke can.Pick up the chip bag. Push the chip bag to the yellow object.

Task Generalization
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State-of-the-art Performance for Agentic Intelligence

Zero-shot evaluation on agentic intelligence. We report the results for pretrained Magma without 
any domain-specific finetuning. Magma is the only model that can conduct the full task spectrum.
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Superior Performance for Both Understanding and Action

Evaluated on Real-World Agentic Tasks

Magma outperforms OpenVLA significantly on real-

world robot tasks ( 67.5 v.s. 25.0 )

Magma show much better few-shot learning 

performance than OpenVLA on LIBERO



Microsoft Research

Superior Performance for Spatial Understanding

Magma can achieve very god spatial 
understanding and reasoning capabilities.

Taks: Collect Green Blocks

We ask model to select top, bottom, left or right to 
move closer to the green block
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User: I really want to win this game. Can you suggest the 
next move that I should make to maximize my chances of 
winning?
Magma: I suggest moving the pawn to d4 to maximize 
your chances of winning.

User: I want to relax for a few hours in here. Can you suggest 
some things for me to do?
Magma: Watch TV, read a book, and enjoy the view of the 
autumn forest.
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Magma

OpenVLA

(Unseen task)(Seen task)
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A Bonus of Magma: UI Navigation
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Takeaways

• VLA models should not only look at current frame:
• Multi-frames is a straightforward method
• Visual trace prompting to encode spatial-temporal context efficiently

• Video is a gold mine for learning generic VLA models:
• Implicit: Latent action from human videos
• Explicit: visual trace dynamics from human motions

• Embodied AI models should NOT only output action:
• Verbal tokens for multimodal understanding
• Trace tokens for enhanced temporal understanding and long-horizon 

awareness
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An embodied agent that can see, think and act

Vision Foundation
Multimodal 

LLM Embodied Agent

See Think Act

• Open-vocabulary
• Spatially grounded
• Versatile inputs & outputs

A multimodal vision 
model can effortlessly 
apply in the wild

• Understand and reasoning
• Free-form instruction
• Think spatially on image

A MLLM can understand 
the instruction and ground 
on the observations

• Perceive and act
• Steerable to various tasks
• Spatial and temporal intelligence 

A VLA to drive embodied 
agent to interact with the 
environments
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• Multimodal Reasoning
• Chain-of-thought reasoning: as shown in O1 and DeepSeek-R1 for language 

tasks
• Thinking before action: some tasks does require system-2 thinking to derive the 

answer
• Many reasoning works appear recently, e.g., LMM-R1

• Multimodal Planning
• Task decomposition: model needs to crack the task into multiple steps and 

take actions step by step, probably also requires self-correction in the middle
• Low-level task: “pick up the apple”
• High-level task: “clean up this table” 

• Some recent work: Pi 0.5

However, most  models still lack
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π0.5: a Vision-Language-Action Model with 
Open-World Generalization 
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Reasoning
(Single-Step)

Planning
(Multi-Step)

What Embodied Agents Should Look Like 

Verbal Intelligence: 
the ability to understand and use 
language, including the ability to 
think with words.

1 Visual  Intelligence: 
the ability to understand the visual 
observation, and abstract them 
into semantic meanings.

2 Spatial + Temporal Intelligence: 
ability to capture the position, location, 
force and motion of objects and interact 
with the 2D/3D world along time axis

3

We are NOT building reasoning or 
planning capability for VLM but VLA

We want to achieve both multi-step 
planning and single-step reasoning
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Reasoning
(Single-Step)

Planning
(Multi-Step)

What Embodied Agents Should Look Like 

Environments
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Embodied Agents
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