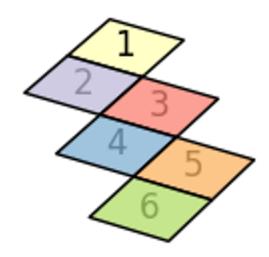
See. Think. Act. **Training Multimodal Agents with Reinforcement Learning**

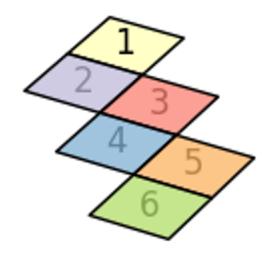
Linjie Li 06/12/2025

Question

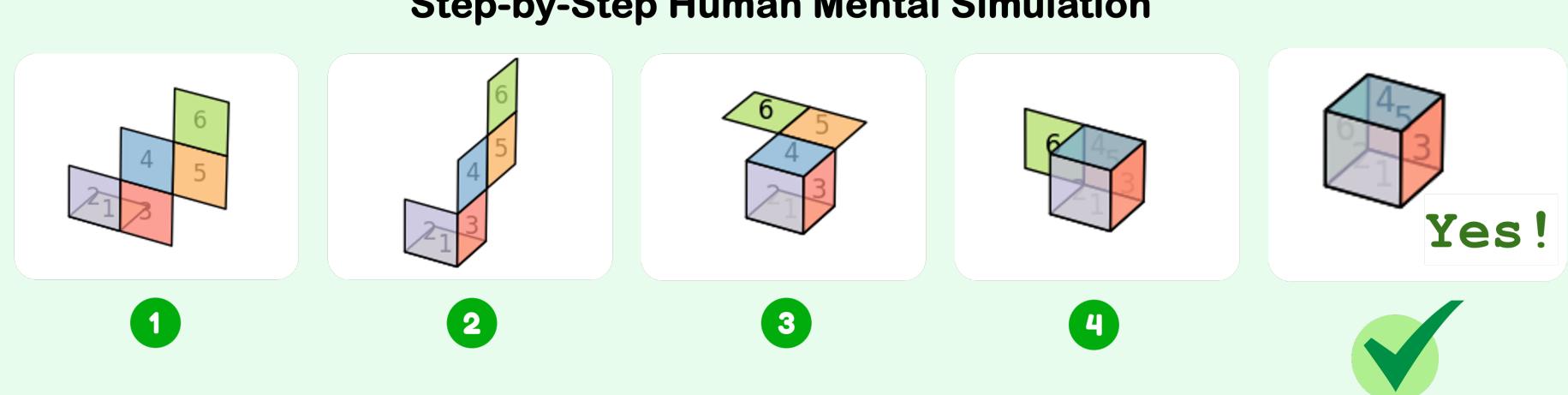


Can the net be folded to form a cube, yes or no?

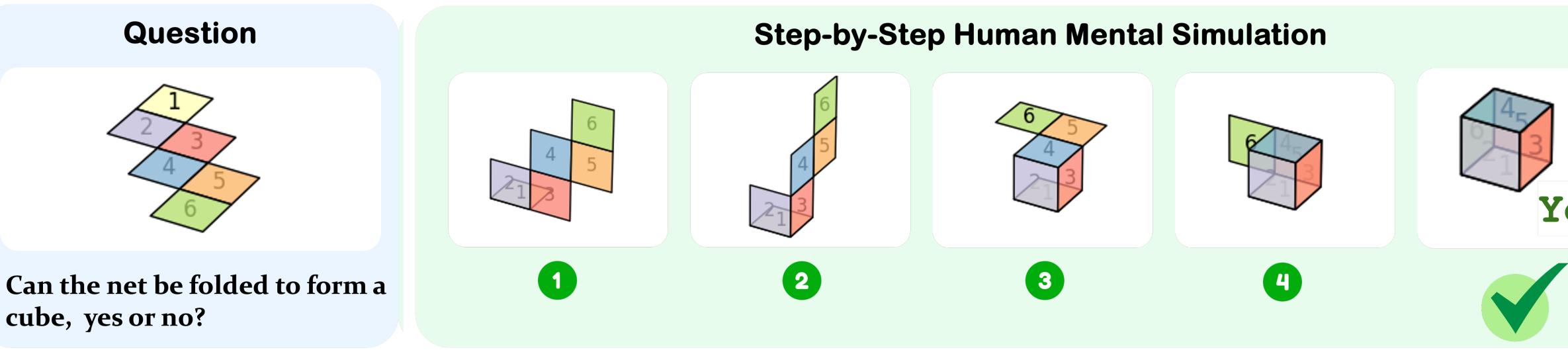
Question



Can the net be folded to form a cube, yes or no?



Step-by-Step Human Mental Simulation

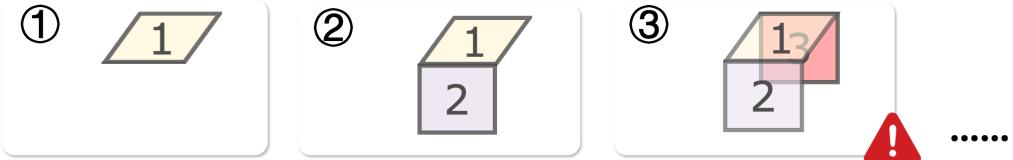


MLLM Textual Simulation

GPT-40: Yes, this net can be folded into a cube. Here's how:

- (1) Face 1 becomes the top of the cube.
- **②** Face 2 folds down to the left of Face 1.
- **③** Face 3 folds down to the right of Face 1.
- ④ Face 4 folds down below Face 2, becoming the front face.
- (5) Face 5 folds down below Face 3, becoming the back face.
- 6 Face 6 folds up to close the bottom of the cube.

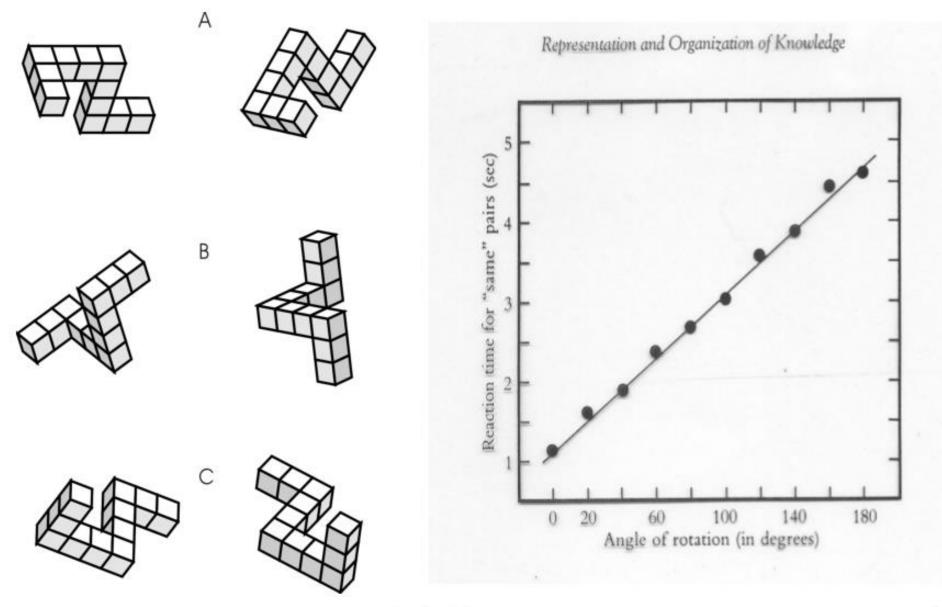
All faces will perfectly align 🗸 , forming a six-faced cube with no overlaps or gaps.



Reasoning Error Analysis: If Face 2 is on the **left** of Face 1 (2) and Face 3 is on the **right** (③), they would be opposite, but they are adjacent in the net. The correct third step should follow the net's layout to maintain their connection.

Visual Simulation is Critical to Human (non-verbal) Reasoning

Mental Rotation (Shepard & Metzler, 1971)



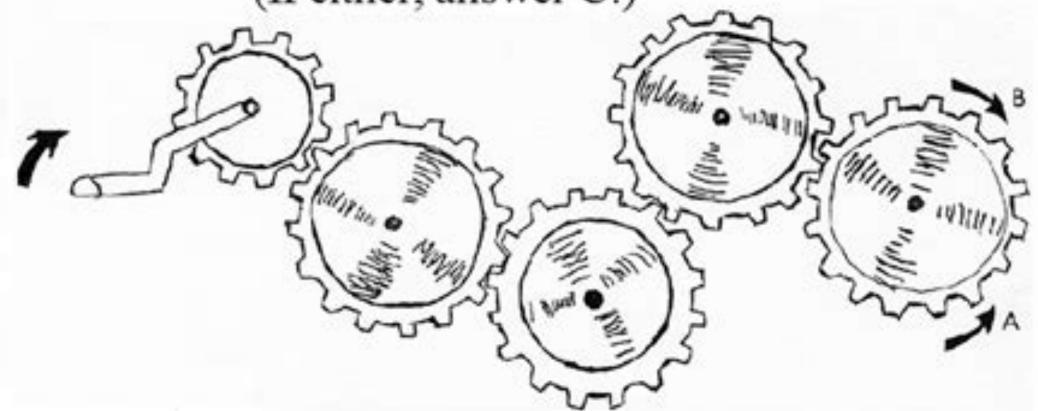
Claudia J. Stanny

9

Mechanical reasoning by mental simulation (Hegarty, 2004)

When the handle is turned in the direction shown, which direction will the final gear turn?

(If either, answer C.)



Visual Simulation is Critical to Human (non-verbal) Reasoning

"Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering." (Tosto, M. G. et al. 2014)

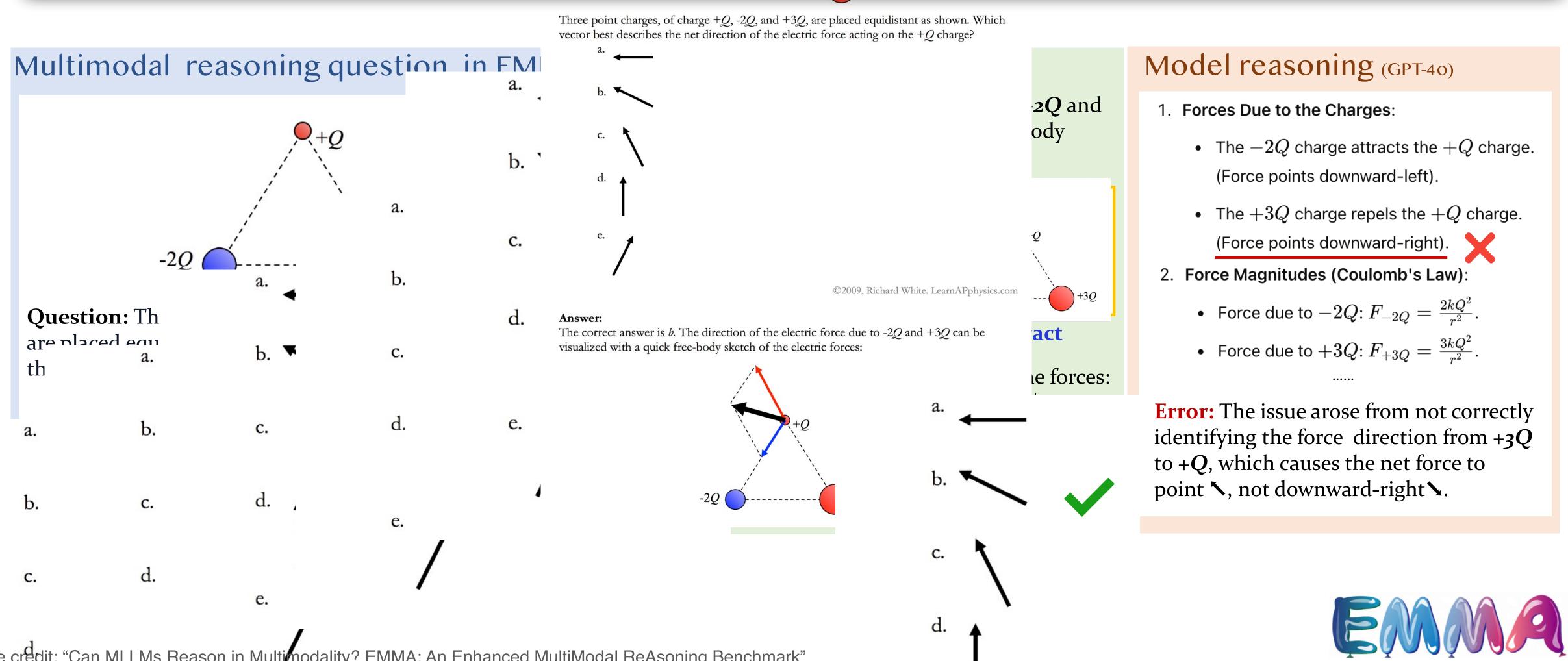
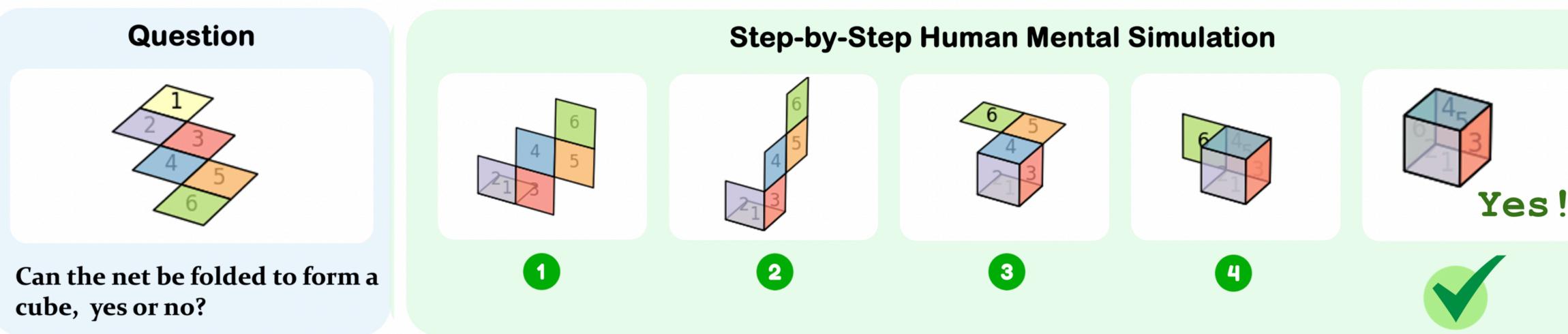


Image credit: "Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark"

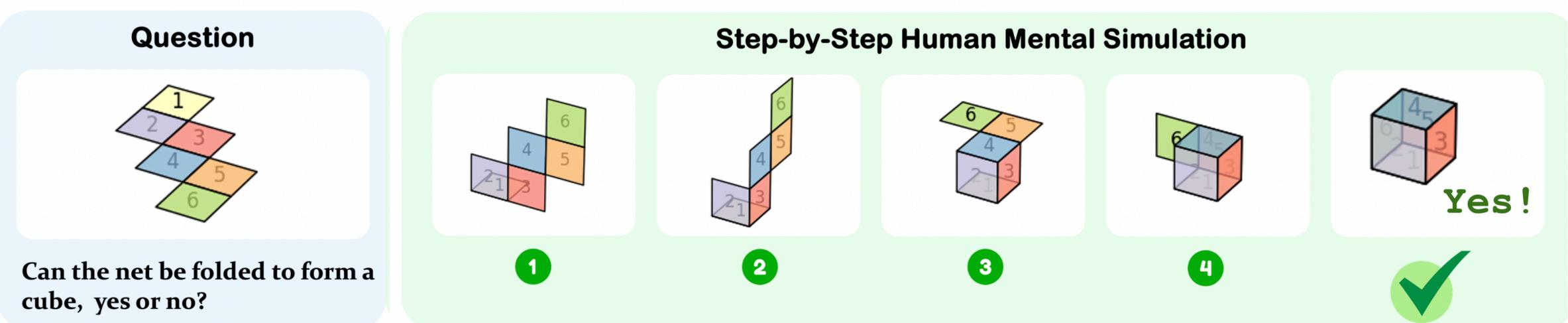
See. Visual Think. Act. **Training Multimodal Agents with Reinforcement Learning**

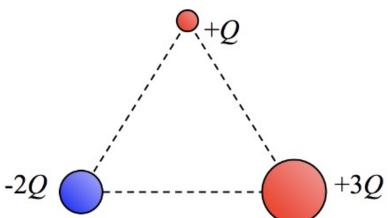
Visual Simulation is Critical to Human (non-verbal) Reasoning

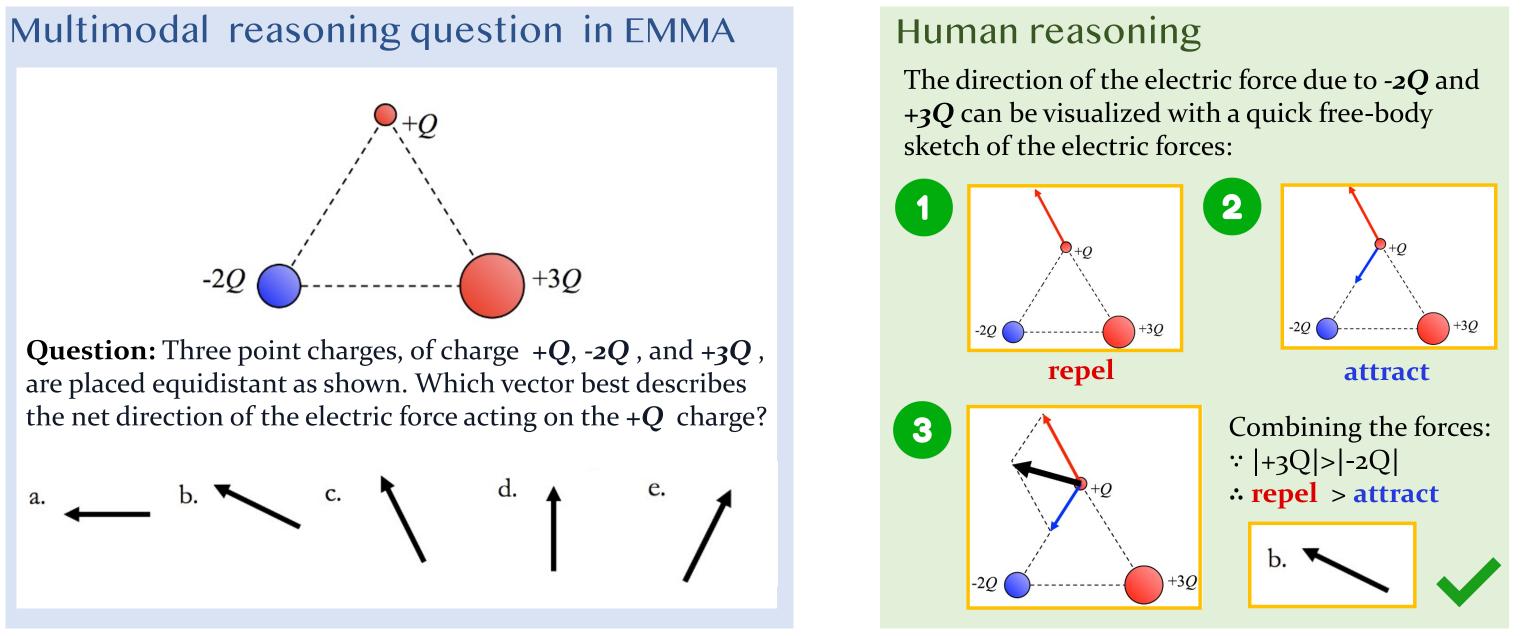
People with spatial intelligence - "skillfully use the ability to create images, spatial relationships, and visualizations in the mind." (Pawlak-Jakubowska & Terczyńska 2023)



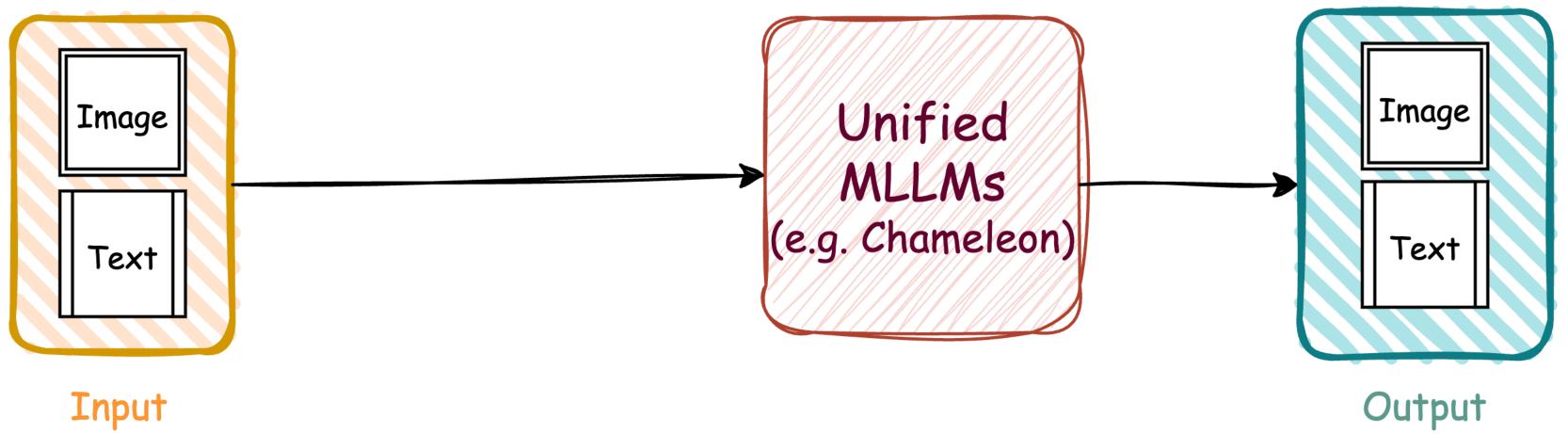
Visual Simulation is Critical to Human (non-verbal) Reasoning

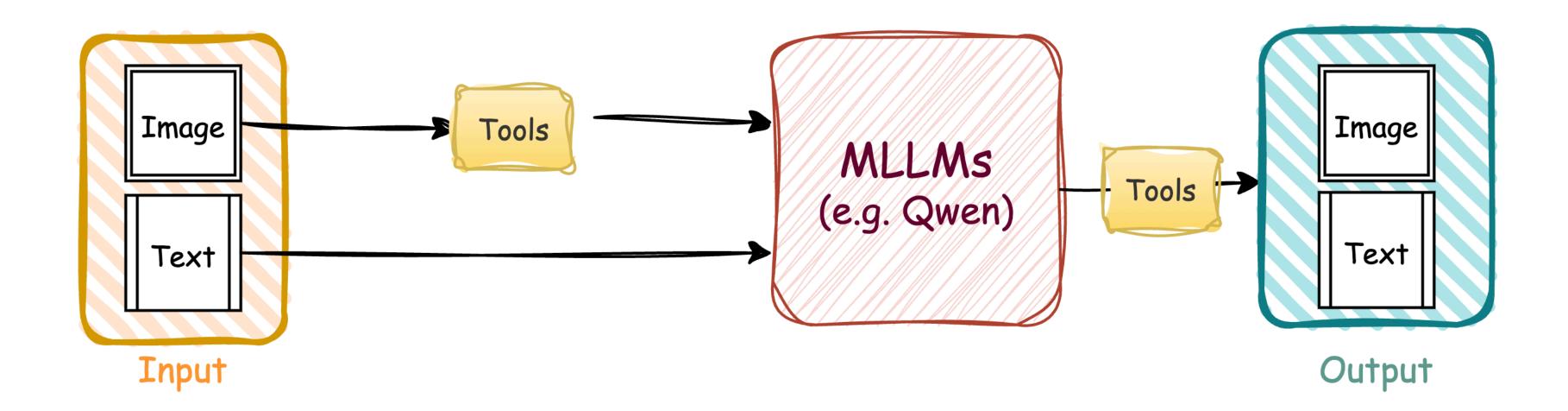




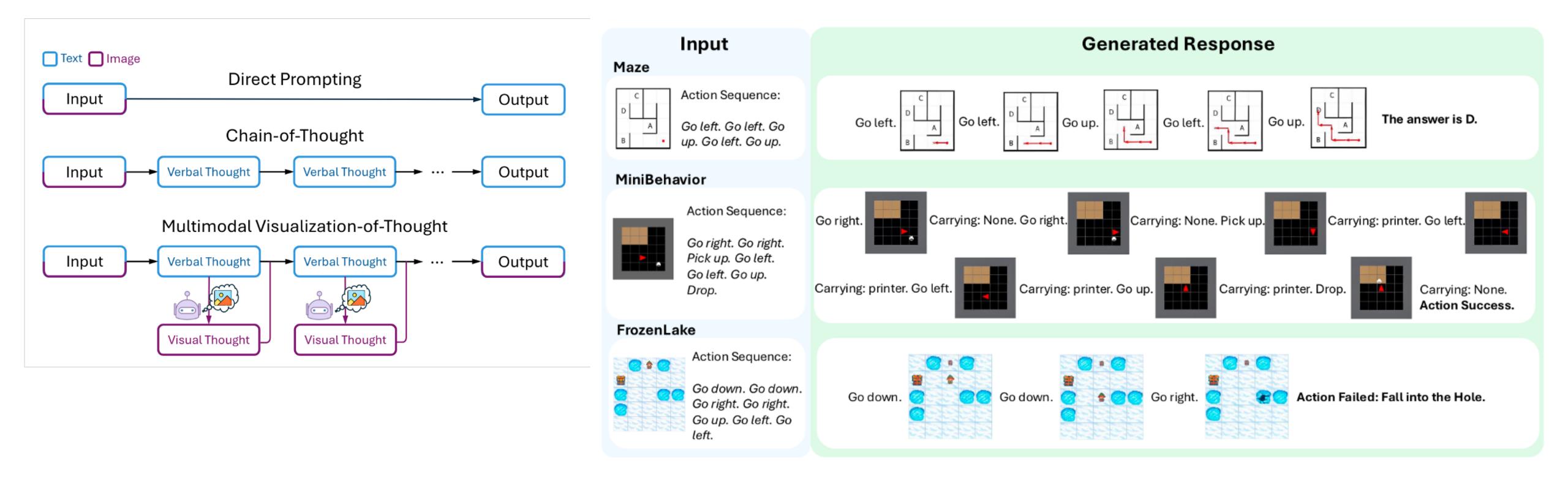


Enabling Models to Think Visually

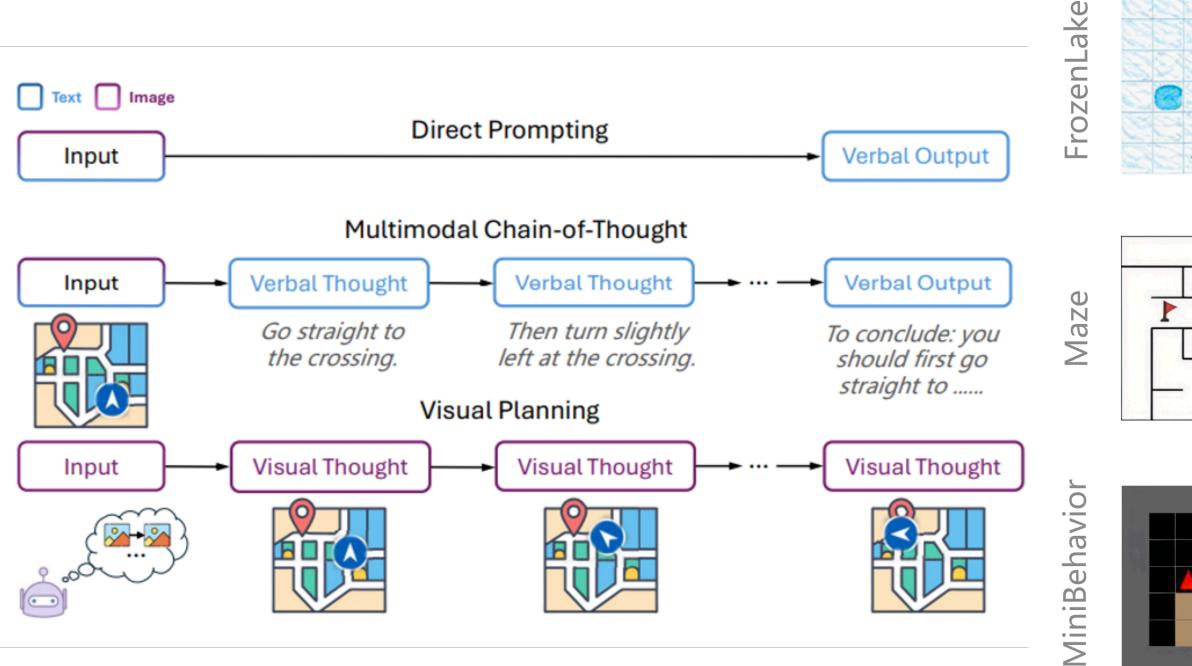


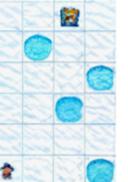


Enabling Models to Think Visually via Image Generation

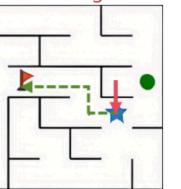


Enabling Models to Think Visually via Image Generation

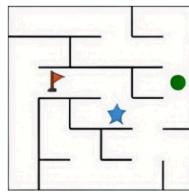




Non-Optimal Action Move Through Wall



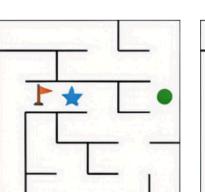
Invalid Action:

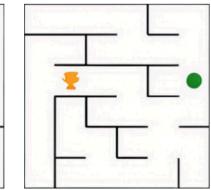


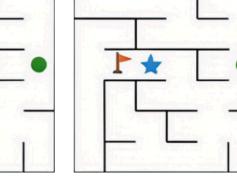
7

Optimal Action

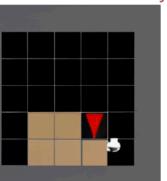
Non-Optimal Action

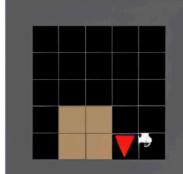


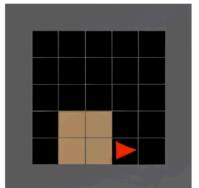


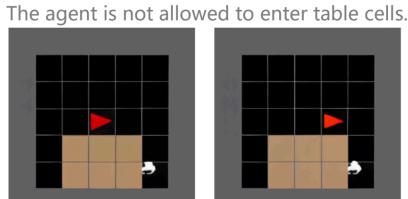


Invalid Action: Violation of Physical Constraint



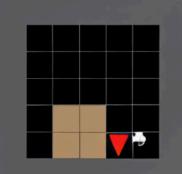




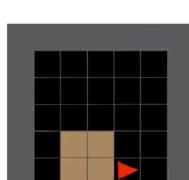


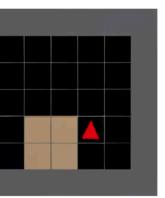
Constraint:

*



*

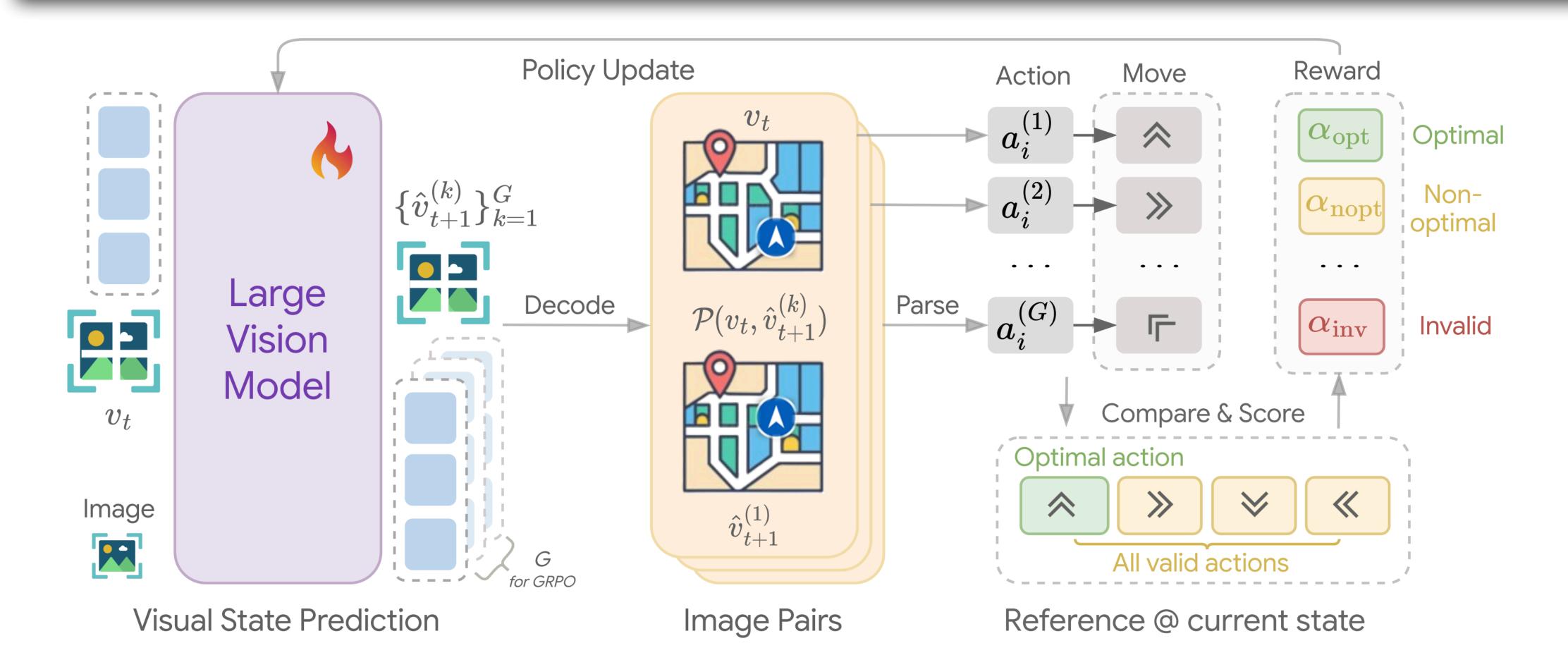




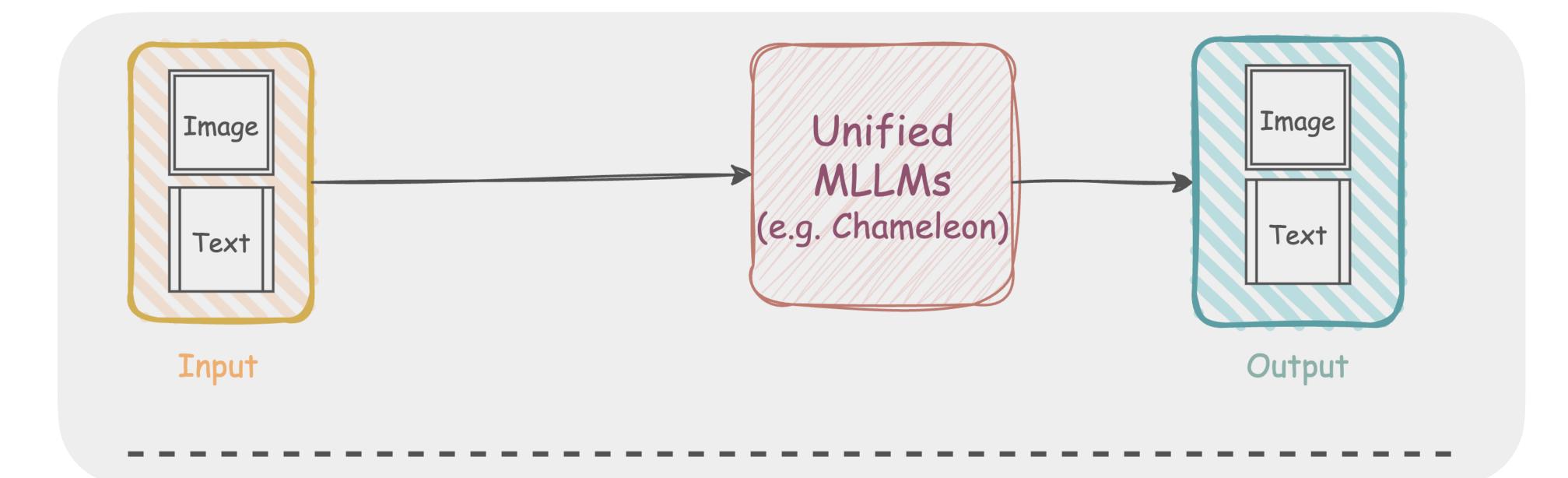
Enabling Models to Think Visually via Image Generation

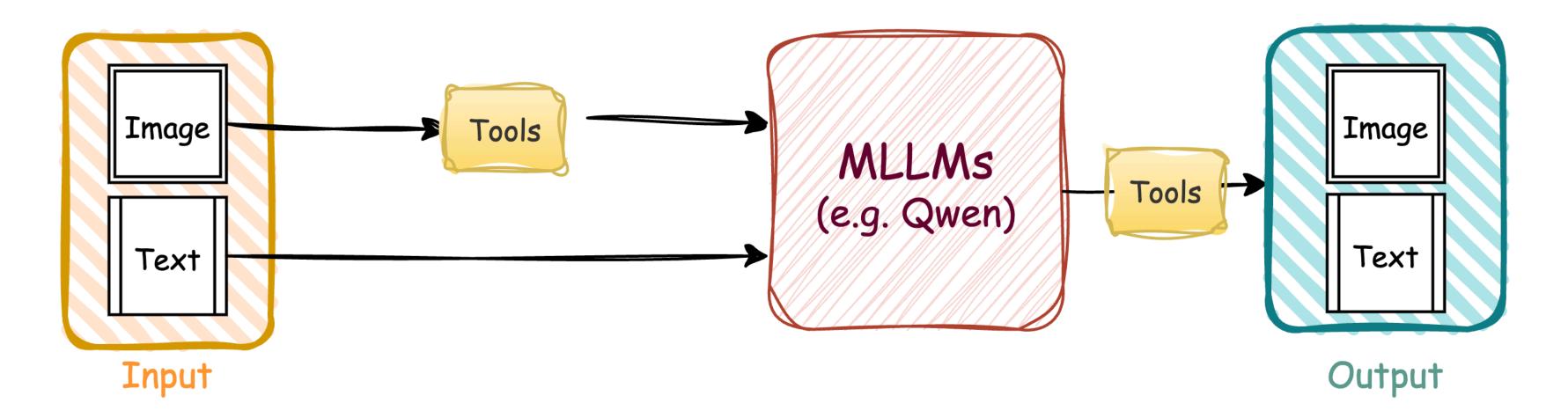
How to reward pure image outputs?

Reward actions - a rule-based parser that turns image-to-image transitions into discrete moves



Credit: "Visual Planning: Let's Think Only with Images"





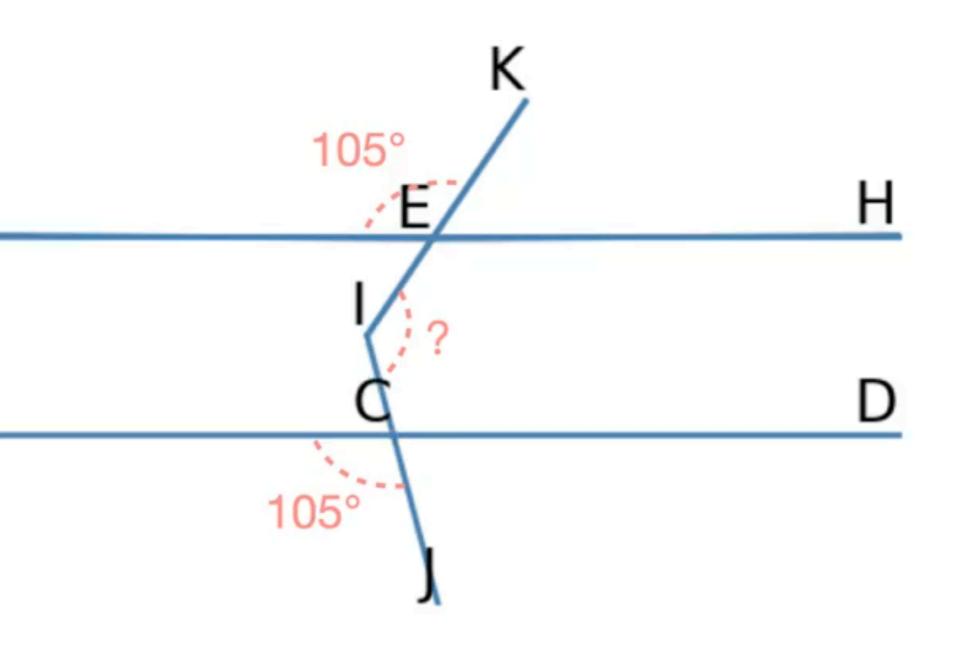
F

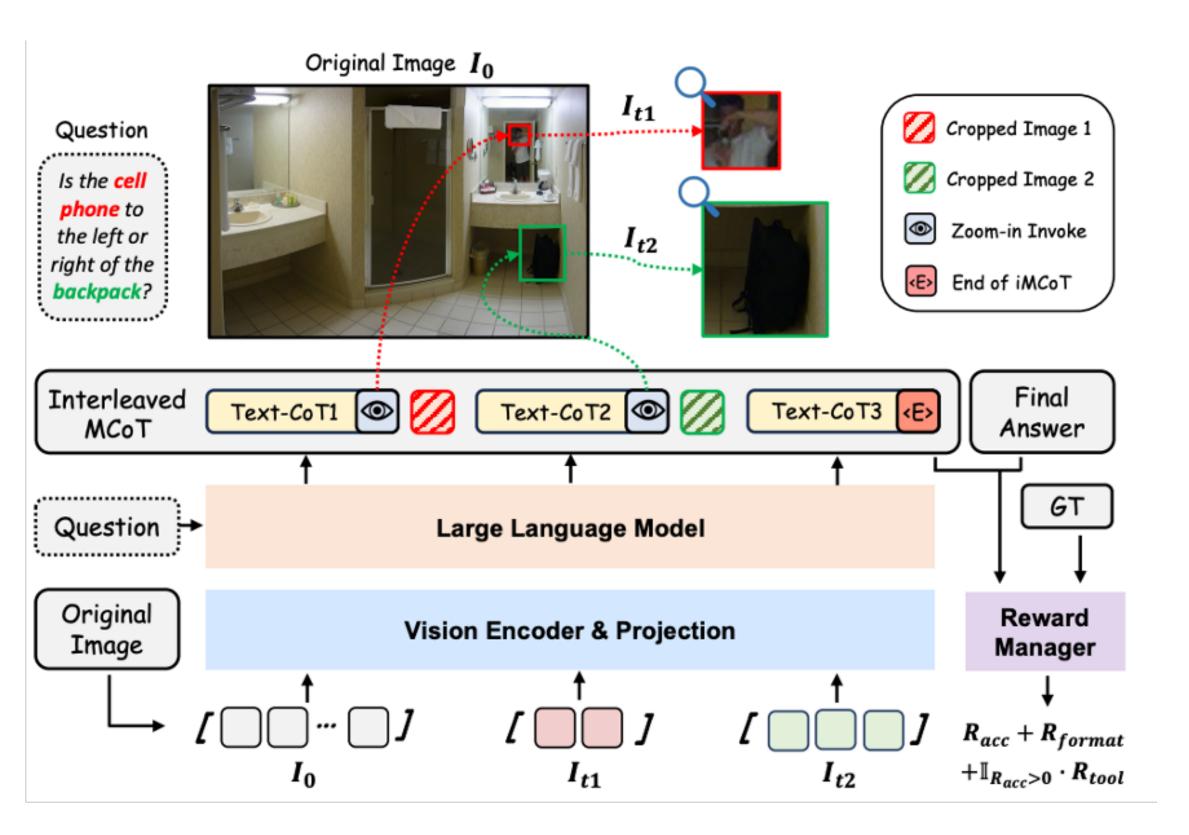
В

Input Image:

Credit: "Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal Language Models"

Query: Given ∠BCJ=105°, ∠KEF=105°. Find ∠EIC





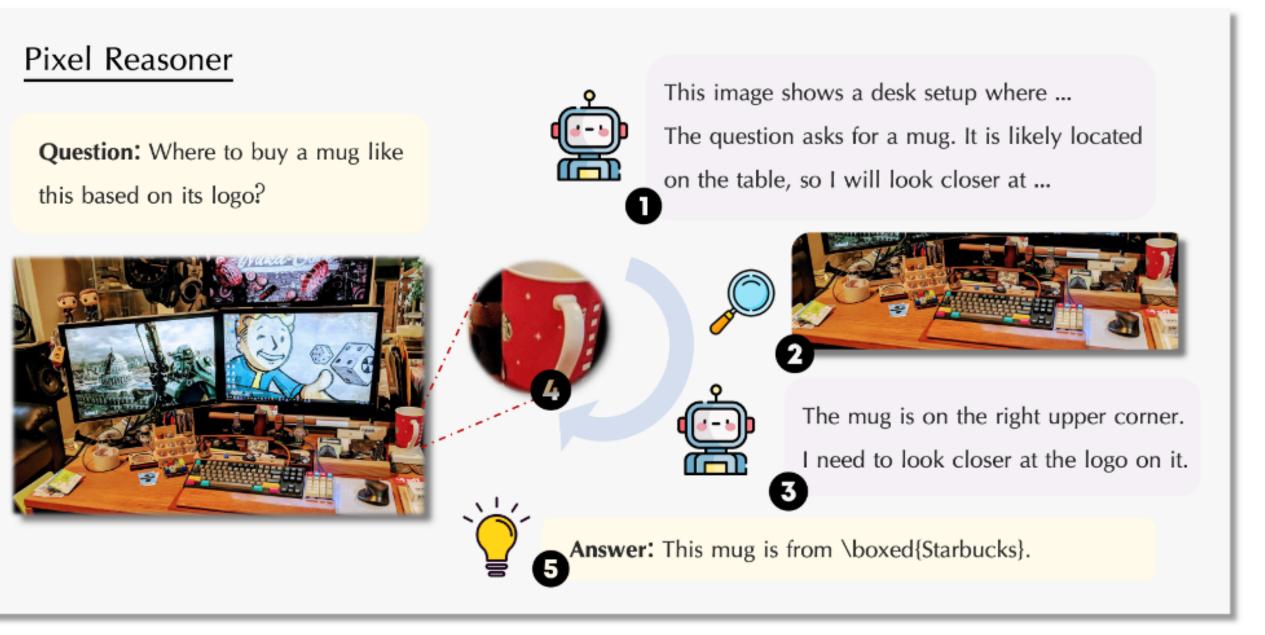


Illustration of Pixel-Space Reasoning

S1 (Initial Exploration) \rightarrow S2 (High-Frequency Tool Usage) \rightarrow S3 (Efficient Exploitation)

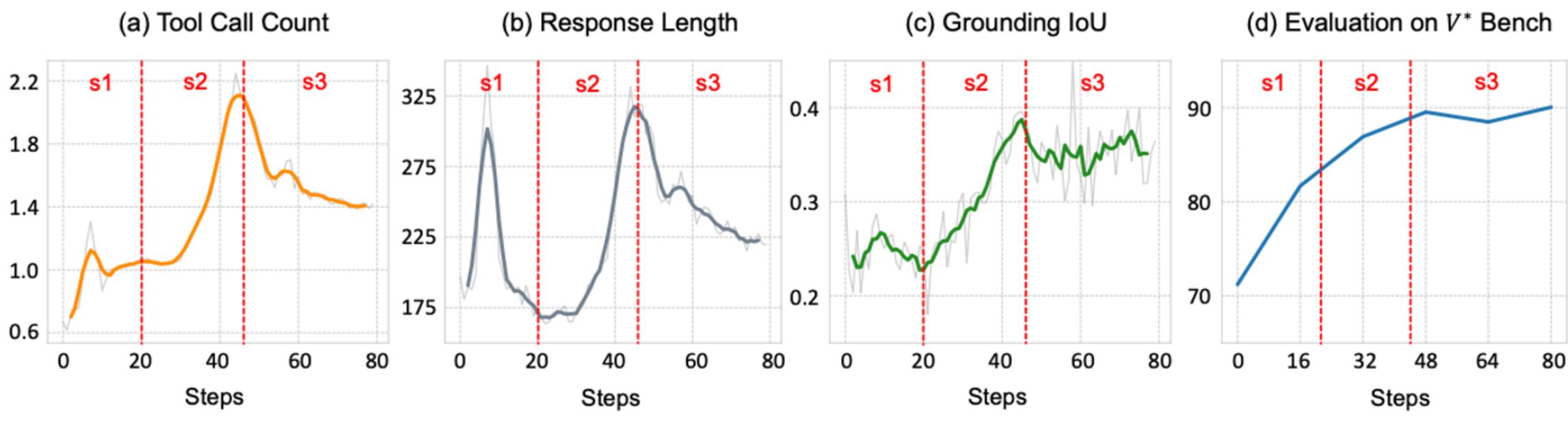


Figure 3: Training dynamics of *DeepEyes*. s1/2/3 represent different stages.

Credit: "DeepEyes: Incentivizing "Thinking with images" via Reinforcement Learning"

S1 (Initial Exploration) \rightarrow S2 (High-Frequency Tool Usage) \rightarrow S3 (Efficient Exploitation)

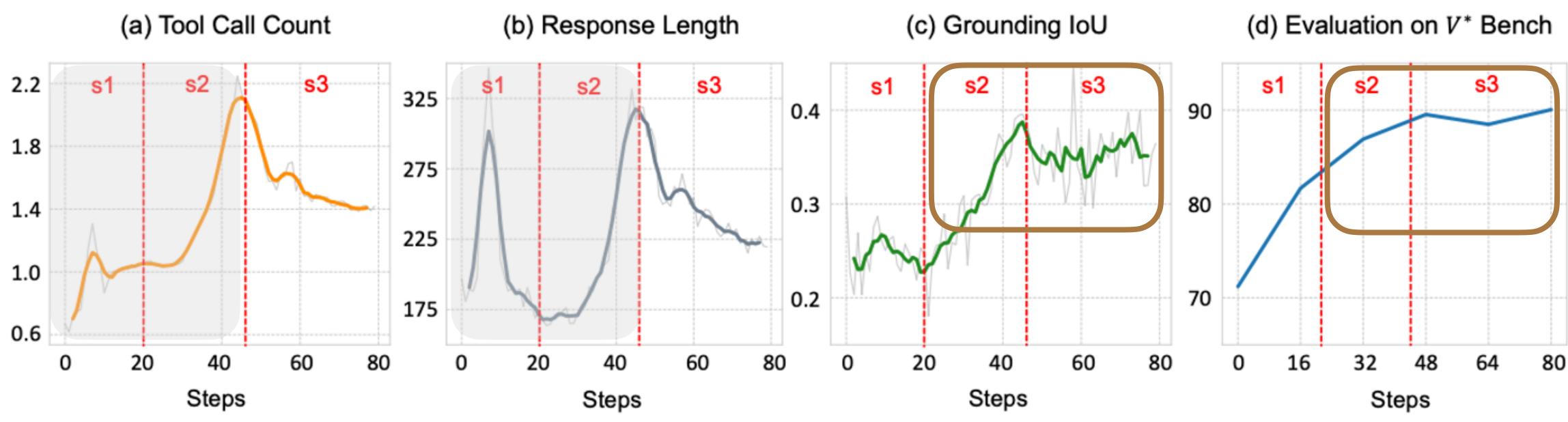
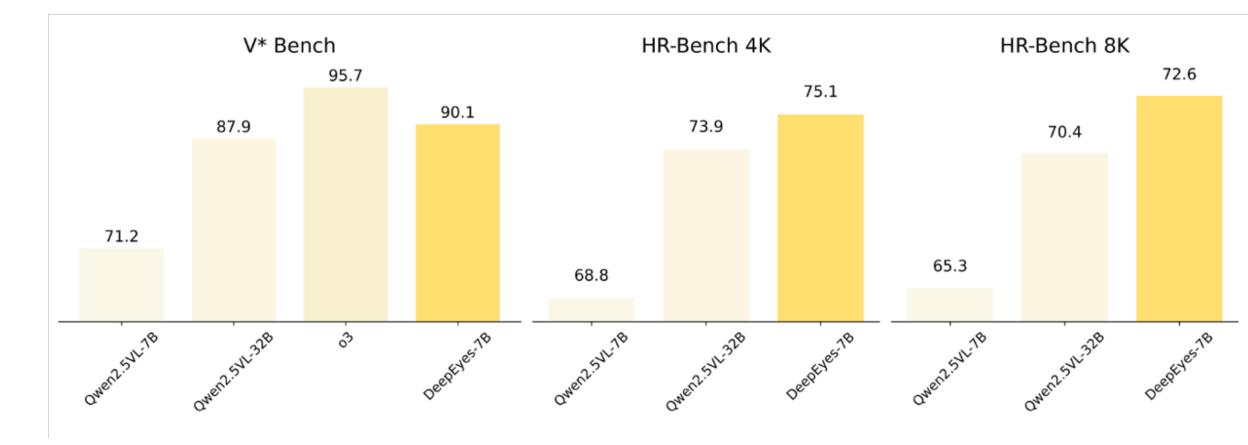


Figure 3: Training dynamics of *DeepEyes*. s1/2/3 represent different stages.

Model learns to deliver better results with fewer, more precise tool interactions.

Zoom-in/Crop as fundamental image manipulation tool => Not only helps visual search performances but also improves on grounding, math reasoning and reduces hallucinations.



Credit: "DeepEyes: Incentivizing "Thinking with images" via Reinforcement Learning"

Model	Param Size	refCO	CO refC	0C0+	refCOC	Og ReasonSeg	Adversarial	POP Popular	
LLaVA-OneVision [62]	7B	-		-	-	-	-	-	-
Qwen2.5-VL [58]	7B	90.	0 8	4.2	87.2	-	-	-	-
Qwen2.5-VL* [58]	7B	89.	1 8	2.6	86.1	68.3	85.9	86.5	87.2
DeepEyes	7B	89.	8 8	3.6	86.7	68.6	84.0	87.5	91.8
Δ (vs Qwen2.5-VL 7B)	-	+0.	7 +	1.0	+0.6	+0.3	-1.9	+1.0	+4.6
Model	Para Siz		Math /ista [64]		Iath se [65]	Math Vision [66]	We Math [67]	Dyna Math [
LLaVA-OneVision [62] 7E	3	58.6 [†]	1	9.3 [†]	18.3 [†]	20.9^{\dagger}	-	
Qwen2.5-VL [58] Qwen2.5-VL* [58]	- 7E 7E		68.2 68.3		9.2 5.6	25.1 25.6	35.2 [†] 34.6	53.3	
DeepEyes	7F		70.1		7.3	26.6	38.9	55.0	

+1.7

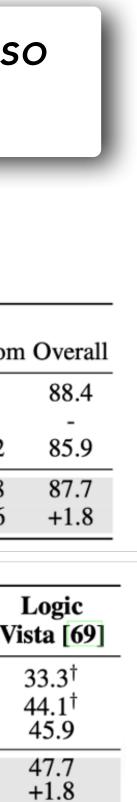
+4.3

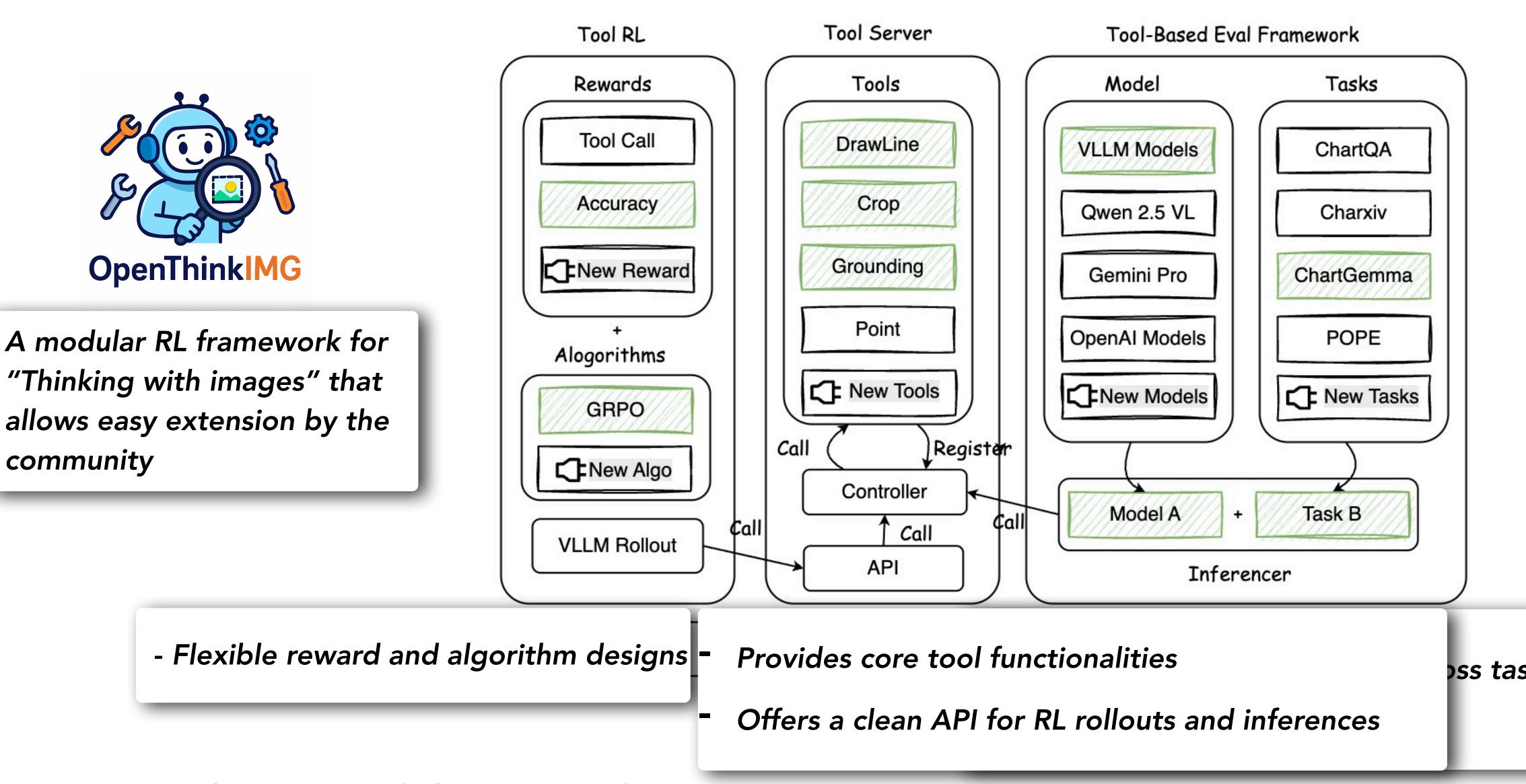
+1.0

+1.7

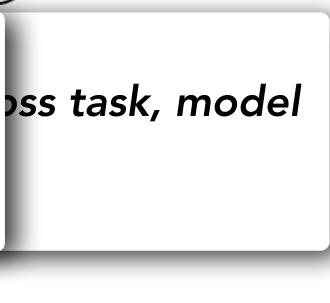
+1.9

 Δ (vs Qwen2.5-VL 7B)

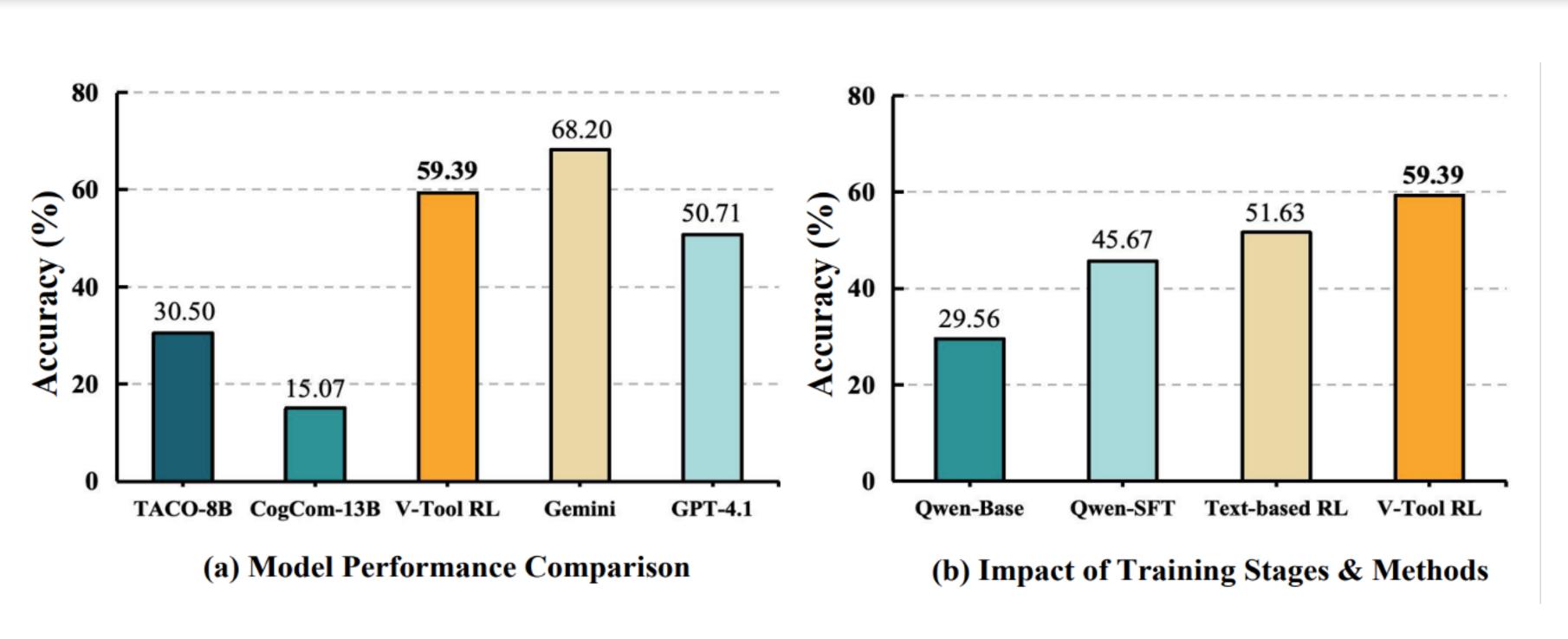




https://github.com/OpenThinkIMG/OpenThinkIMG



Model trained with the OpenThinkIMG framework (V-Tool RL) reaching comparable performance to closed-source models



Performance Comparison on ChartGemma test set.

https://github.com/OpenThinkIMG/OpenThinkIMG

Case study on precise visual manipulation with more tools: ZoomIn + OCR

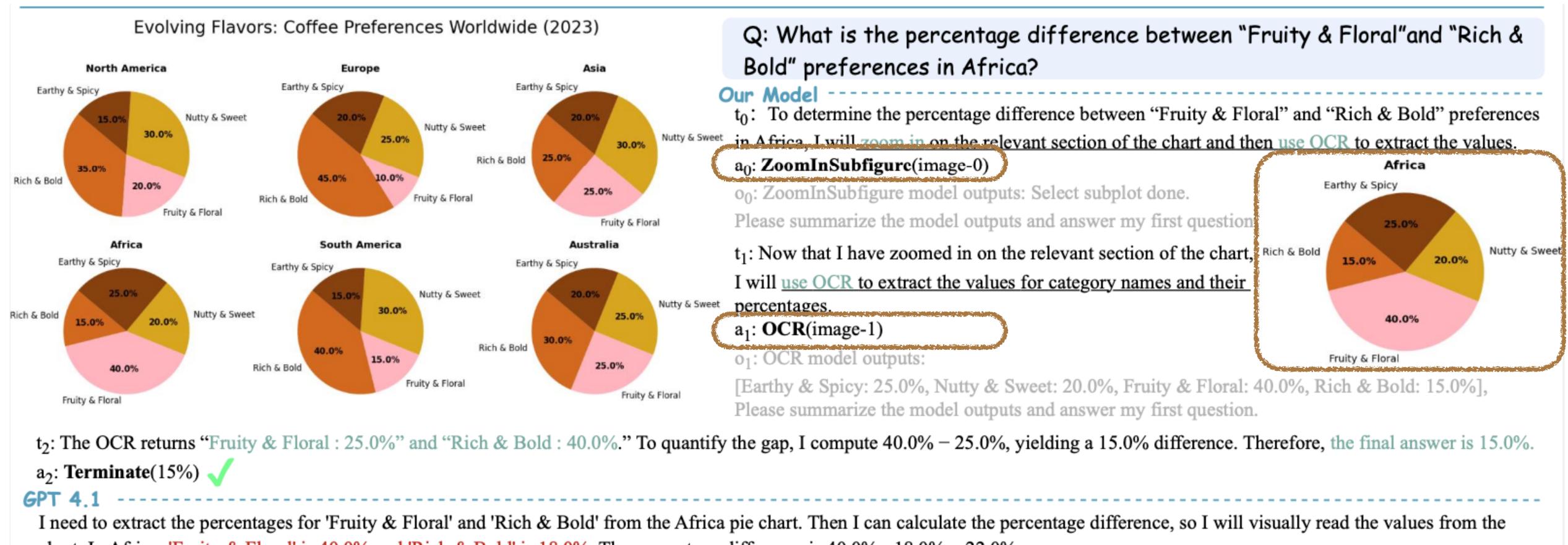
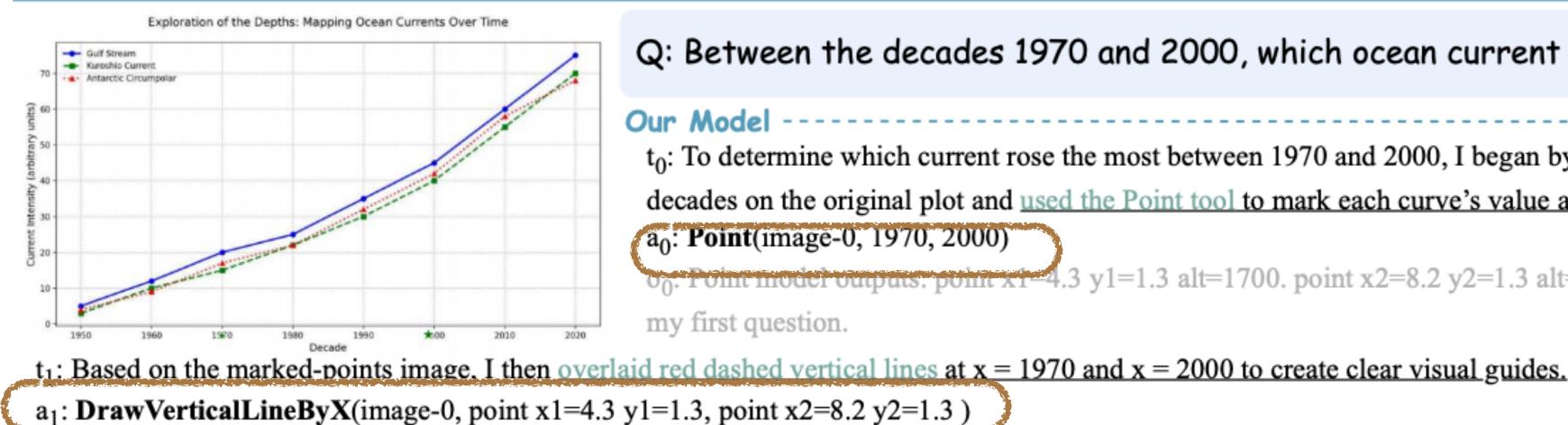


chart. In Africa: 'Fruity & Floral' is 40.0% and 'Rich & Bold' is 18.0%. The percentage difference is 40.0% - 18.0% = 22.0%. Therefore, the final answer is 22.0%.

https://github.com/OpenThinkIMG/OpenThinkIMG

Case study on precise visual manipulation with more tools: Point + DrawLines



o1: DrawVerticalLineByX model outputs: Line drawn successfully. Generated image: image-1. Please summarize the model outputs and answer my first question.

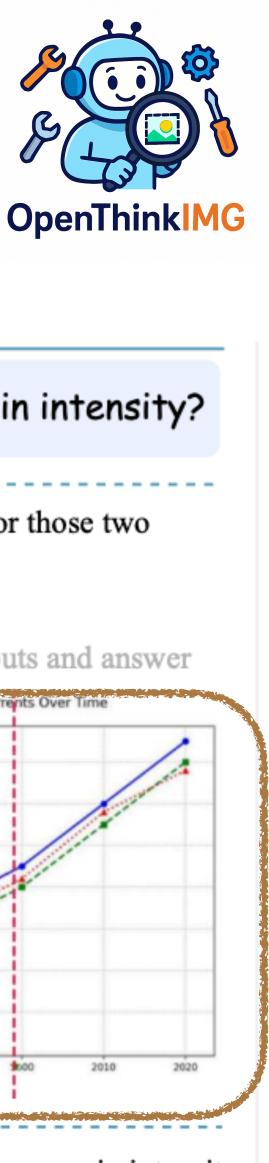
t₂: From the resulting annotated plot, I read off the intensities-Gulf Stream rising from 20 to 45, Kuroshio Current from 15 to 40, and Antarctic Circumpolar from 17 to 42—and calculated that each current increased by 25 units over that period, leading to a three-way tie for the largest gain.

a₂: **Terminate**(three-way tie) \checkmark

GPT 4.1

Let's calculate the difference in y-coordinates for each current between 1970 and 2000. The largest vertical change (from a higher y to a lower y) corresponds to the greatest increase in intensity. Gulf Stream: 67.3 to 43.3 (difference 24.0), Kuroshio: 70.0 to 47.9 (difference 22.1), Antarctic Circumpolar: 70.4 to 47.3 (difference 23.1). The Gulf Stream exhibits the largest increase.

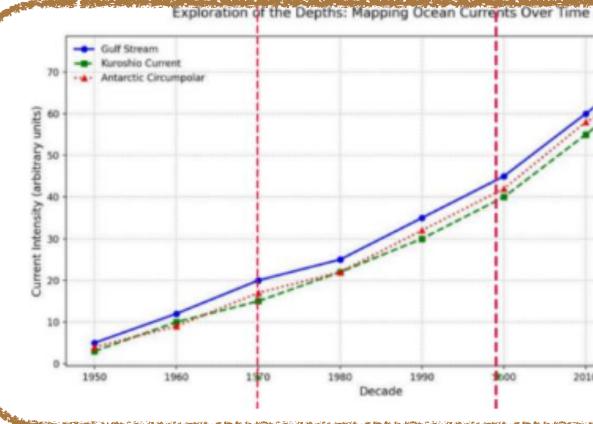
https://github.com/OpenThinkIMG/OpenThinkIMG



Q: Between the decades 1970 and 2000, which ocean current exhibited the largest increase in intensity?

t₀: To determine which current rose the most between 1970 and 2000, I began by pinpointing the exact x-axis positions for those two decades on the original plot and used the Point tool to mark each curve's value at 1970 and 2000.

00. Four model outputs: point x1-4.3 y1=1.3 alt=1700. point x2=8.2 y2=1.3 alt=2000. Please summarize the model outputs and answer

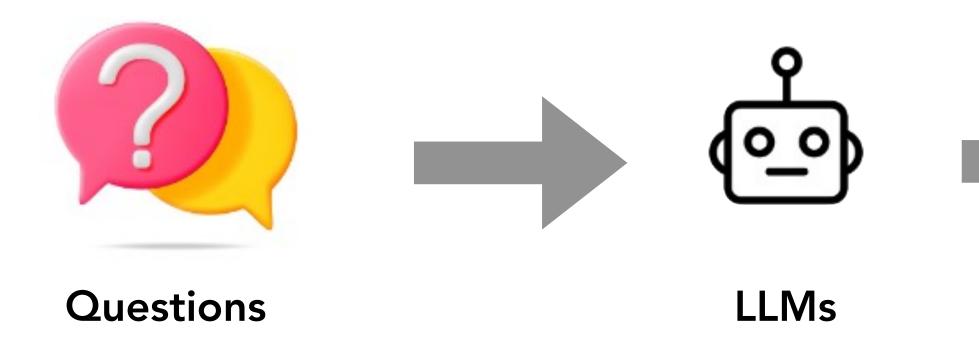


See. Visual Think. Act. **Training Multimodal Agents with Reinforcement Learning**

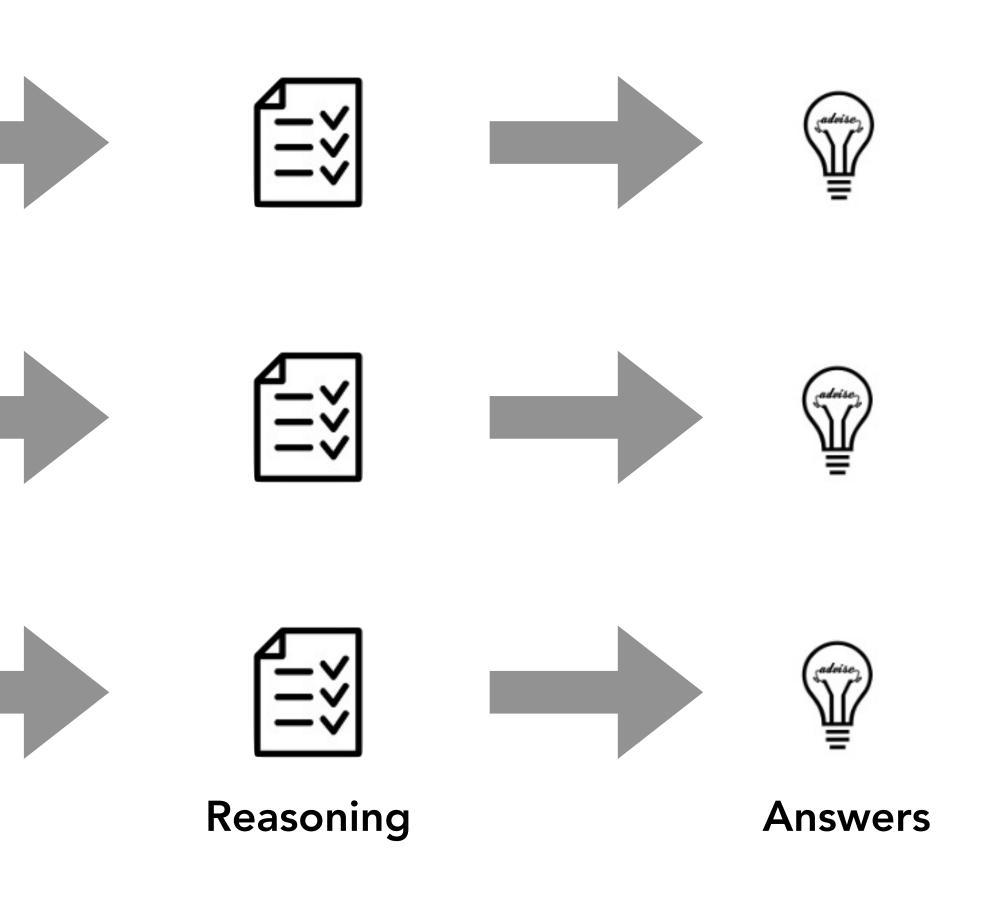
Training Language Agents with Reinforcement Learning

"See". Think. Act.

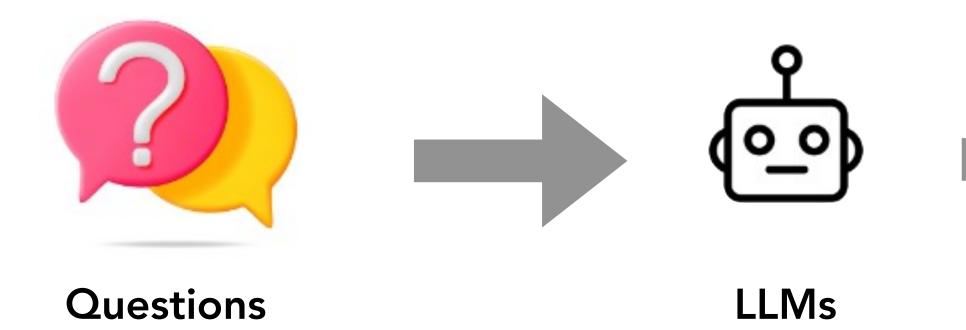
Revisiting RL with Verifiable Reward for LLMs



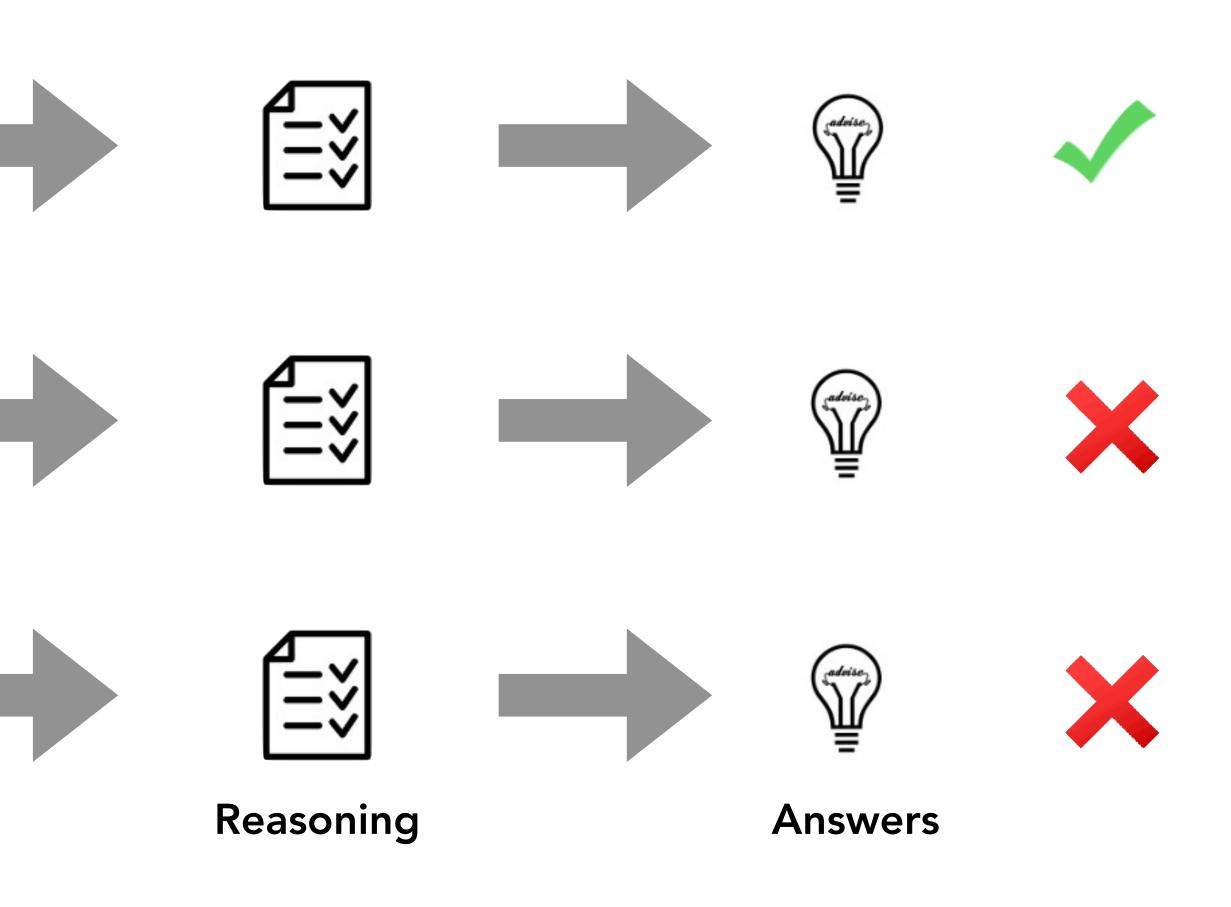
Step 1 - Rollout



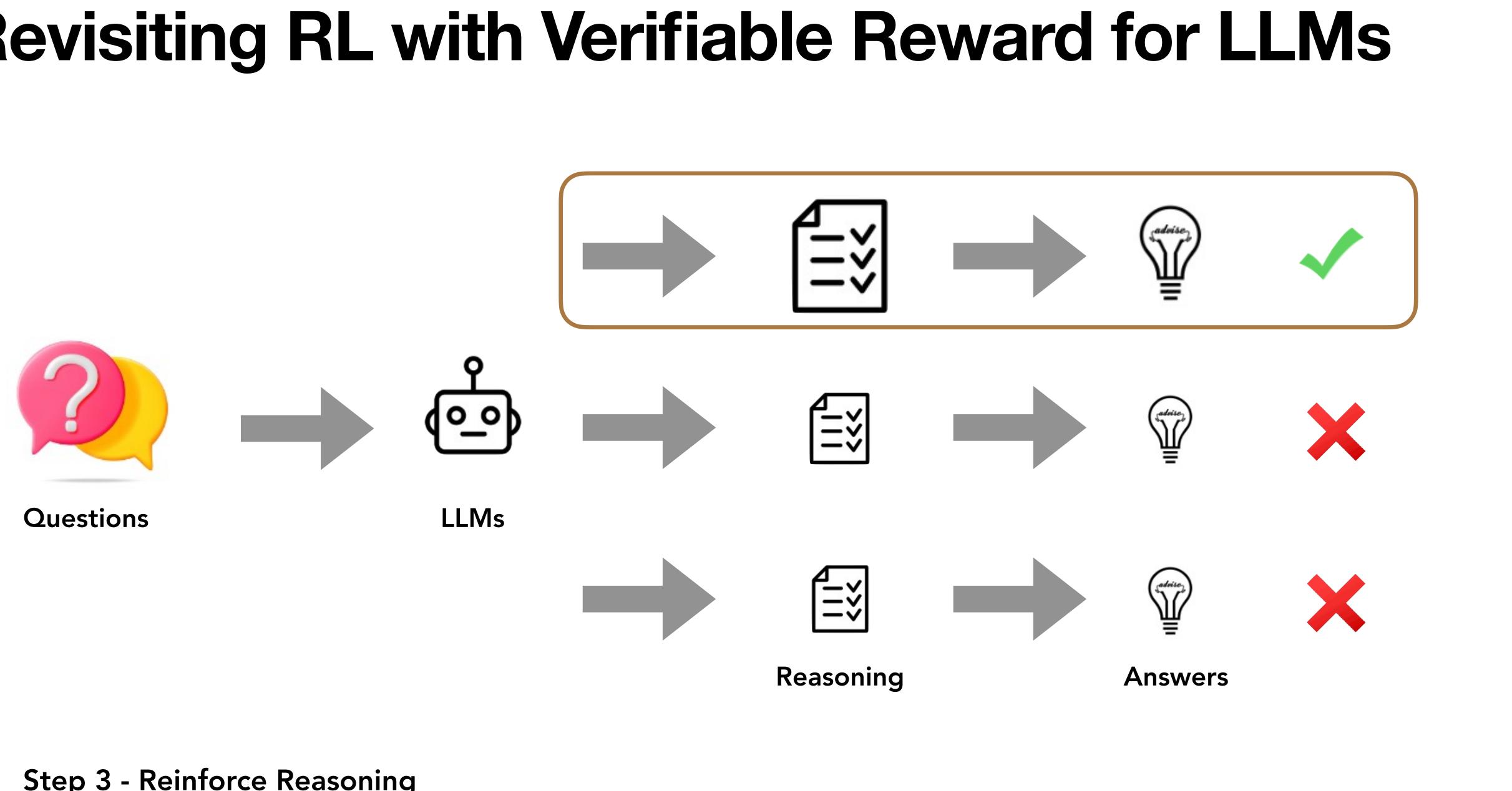
Revisiting RL with Verifiable Reward for LLMs



Step 2 - Verification

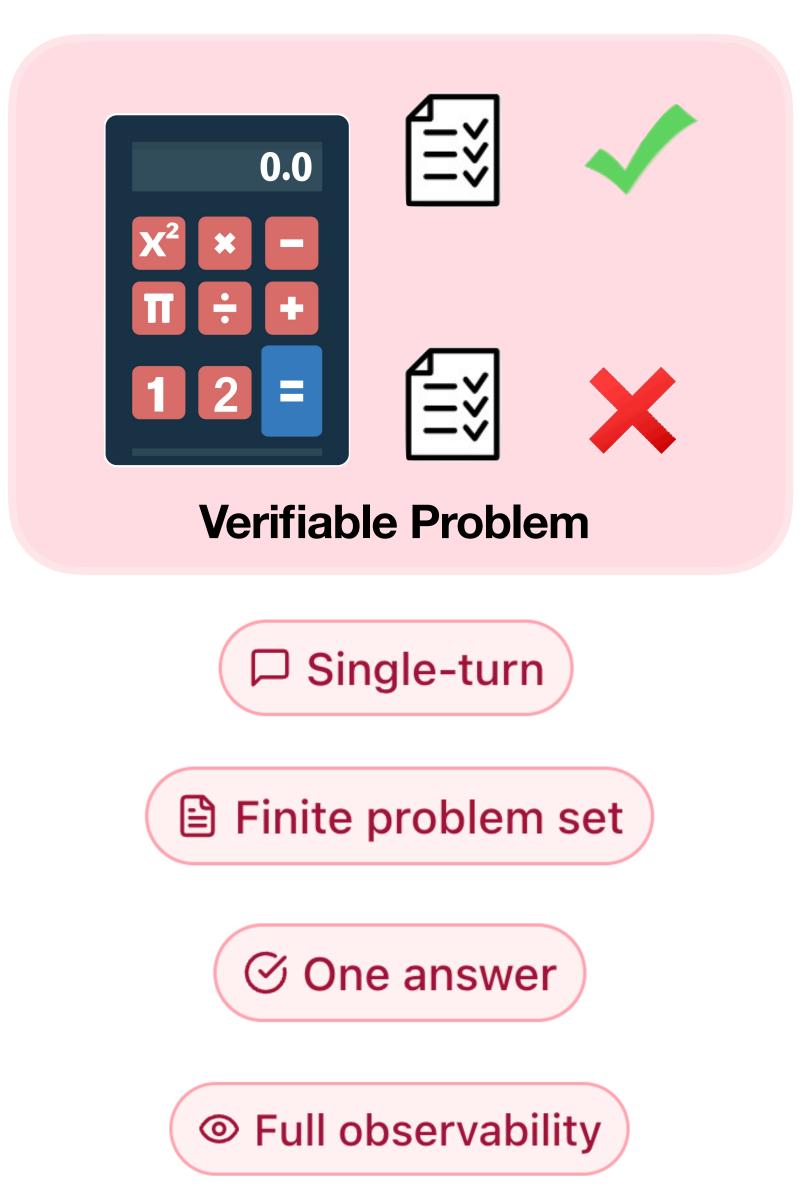


Revisiting RL with Verifiable Reward for LLMs



Step 3 - Reinforce Reasoning

Extending to More Real-World Setting



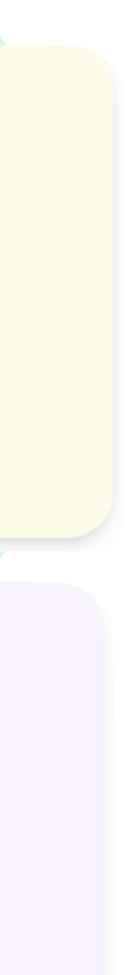
C Multi-turn feedback

∞ "Infinite" state combos

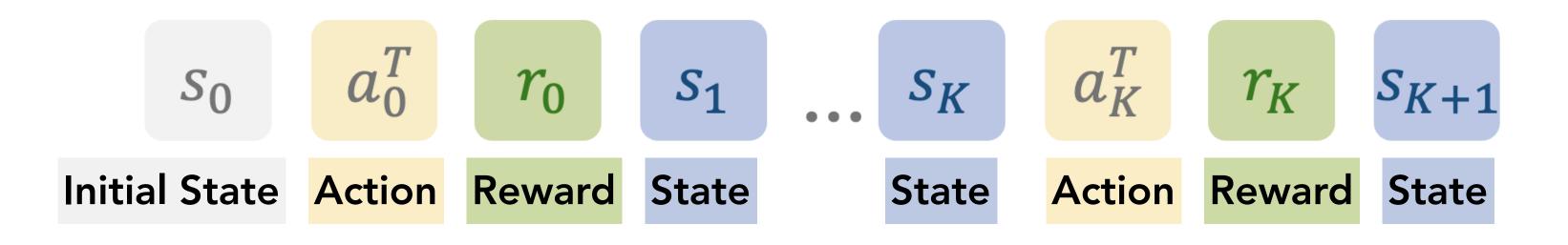
Q Partial observability

Key Challenges of RL in Observable Environment

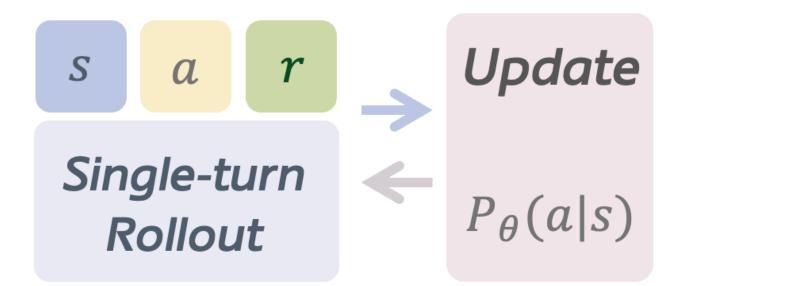
Markov Decision Processes!

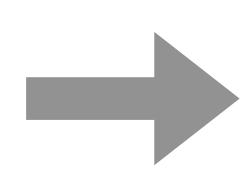


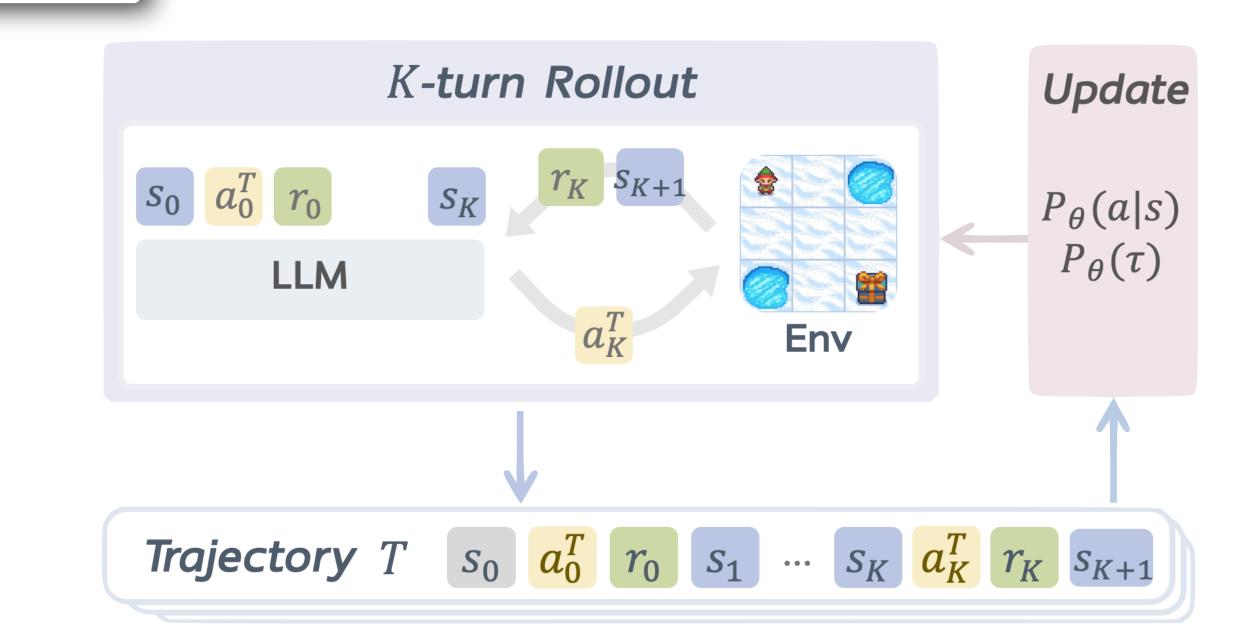
MDP as a sequence prediction.



Reinforcing the entire multi-turn interaction trajectory



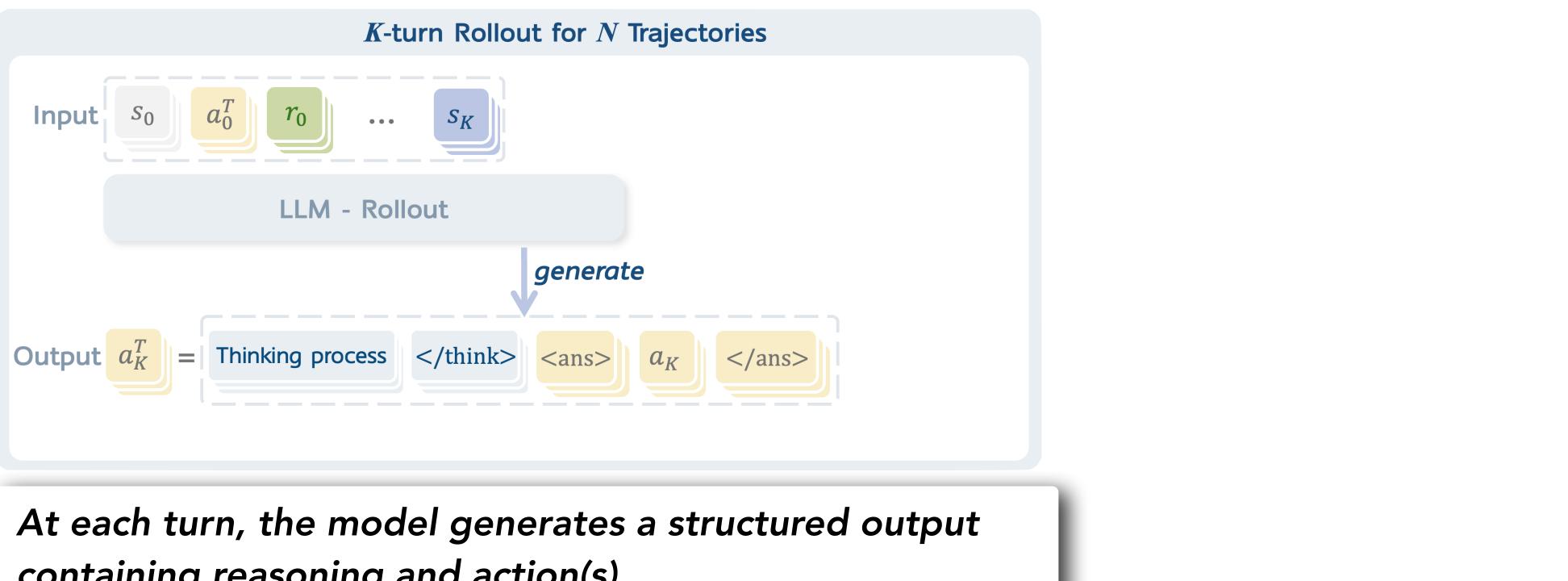




K-turn Rollout for N Trajectories	
Input s_0 a_0^T r_0 s_K	
LLM - Rollout	

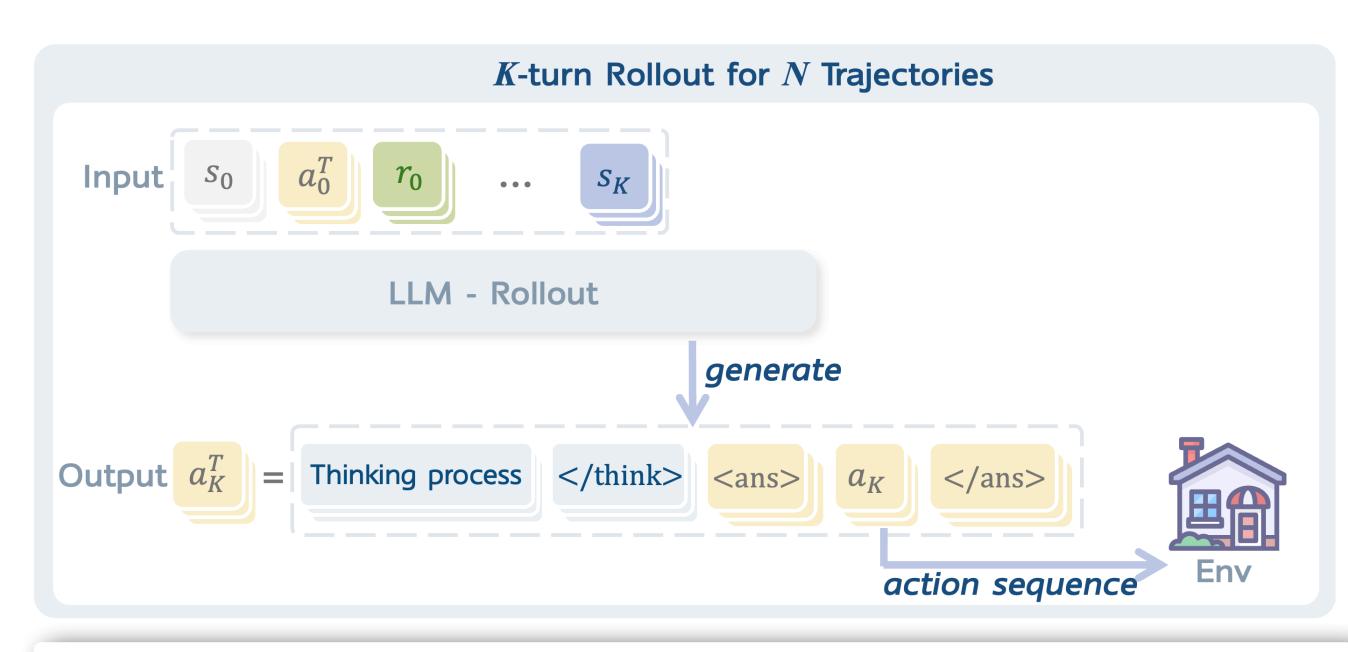
At each turn, the model takes in the trajectory history staring from the initial state to the current state.

Step 1 - Trajectory Rollout



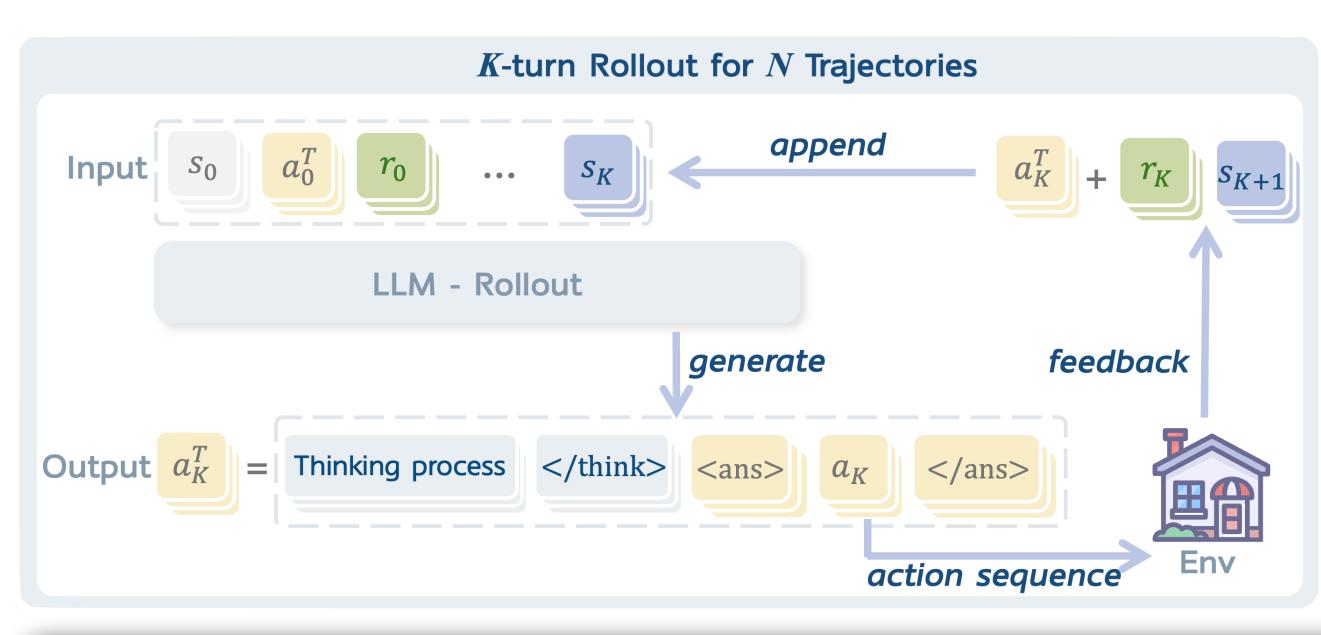
containing reasoning and action(s)

Step 1 - Trajectory Rollout



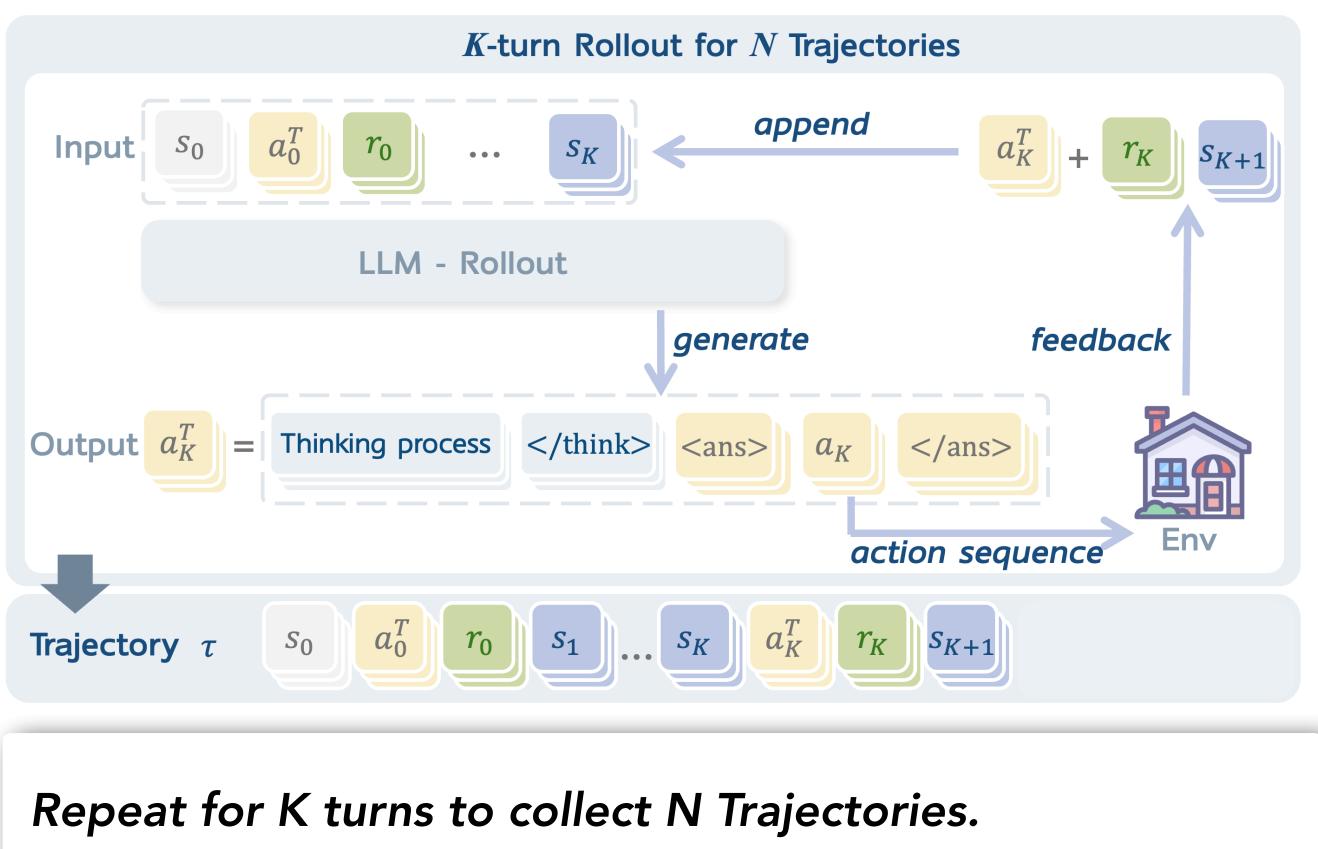
At each turn, action sequences are sent to the environment to be excused step-by-step.

Step 1 - Trajectory Rollout



Collect the turn-level reward and the new state to append to the input sequence.

Step 1 - Trajectory Rollout



Step 1 - Trajectory Rollout

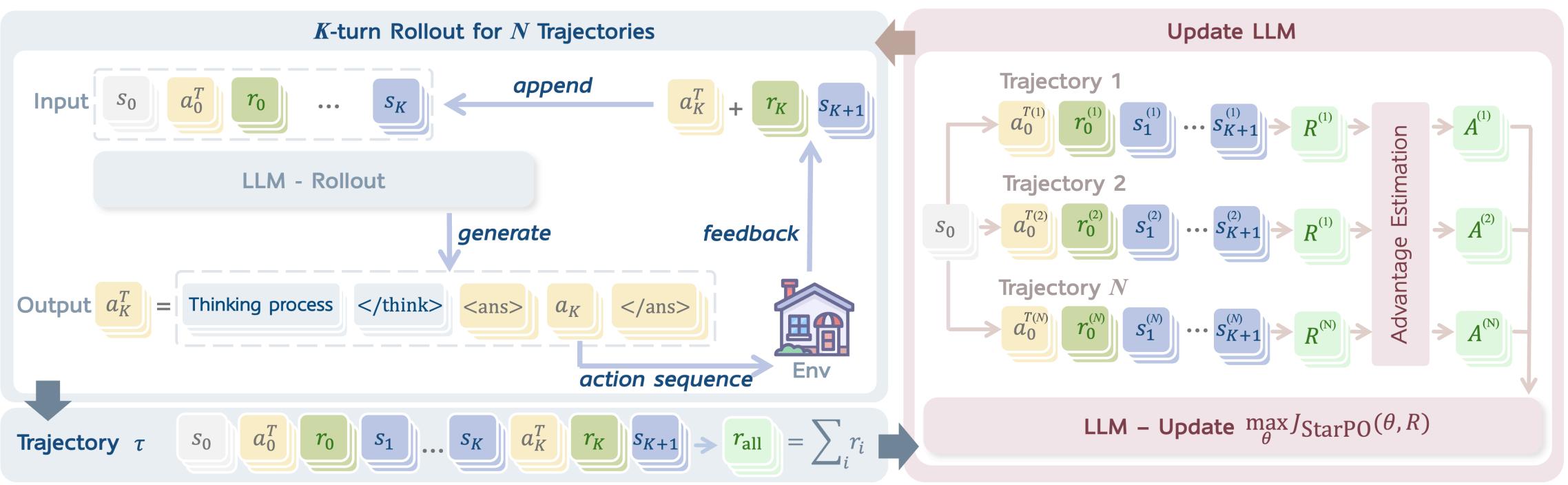
StarPO: State-Thinking-Action-Reward Policy Optimization



Compute trajectory-level rewards.

Step 2 - Trajectory Verification

StarPO: State-Thinking-Action-Reward Policy Optimization



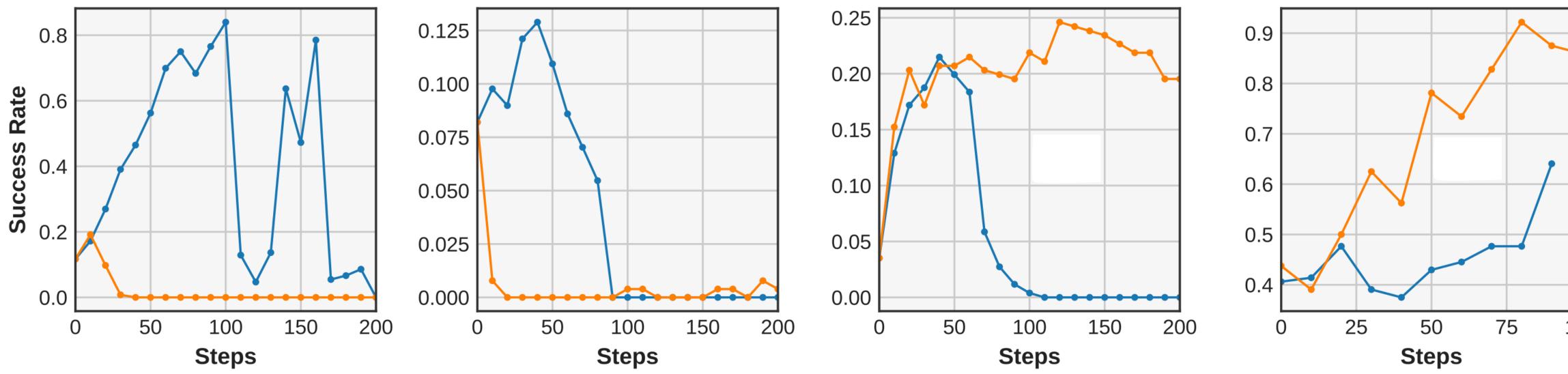
Step 3 - Reinforce Multi-turn Trajectory

RL in Observable Environment is Challenging

Single-turn RL may not be directly adaptable

Bandit

Sokoban



--- PPO ---- GRPO



FrozenLake

RL in Observable Environment is Challenging

"Echo Trap" - Agents overfit to locally rewarded reasoning patterns, suppressing exploration

Step	Reasoning traces on Bandit
0	Dragon is often associated with patience, while Phoenix is associated with speed, ag
0	The symbolic meaning of Dragon and Phoeniz may have different reward distributions is more likely to give higher rewards on a
150	My initial intention is to pick arm Dragon for arm Dragon.
150	My initial intention is to pick arm Dragon go for arm Dragon.
150	My initial intention is to choose Arm Drag arms, my intention was to choose Arm Drage

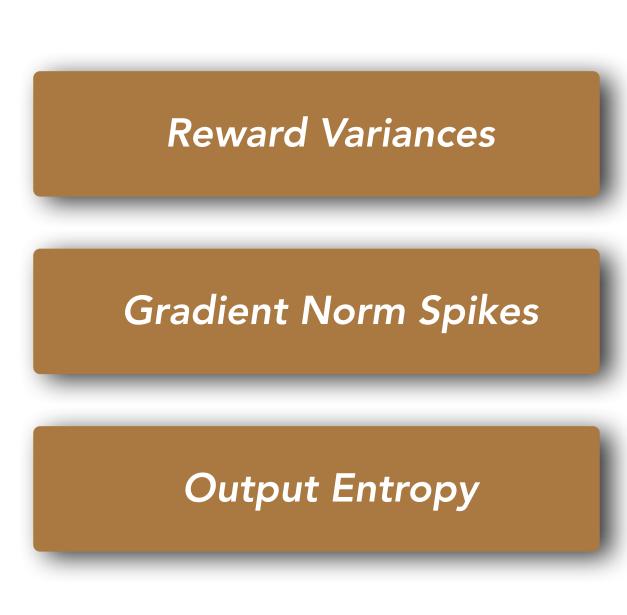
https://ragen-ai.github.io

strength, and reliability, gility, and creativity. .x's names suggests that they . Therefore, I think Phoenix average.

on. My first action is to go

on, so my first action is to

gon. After analyzing both gon.



How to Avoid "Echo Trap"?

Using reward variance as a proxy to measure reasoning diversity



Low reward variance

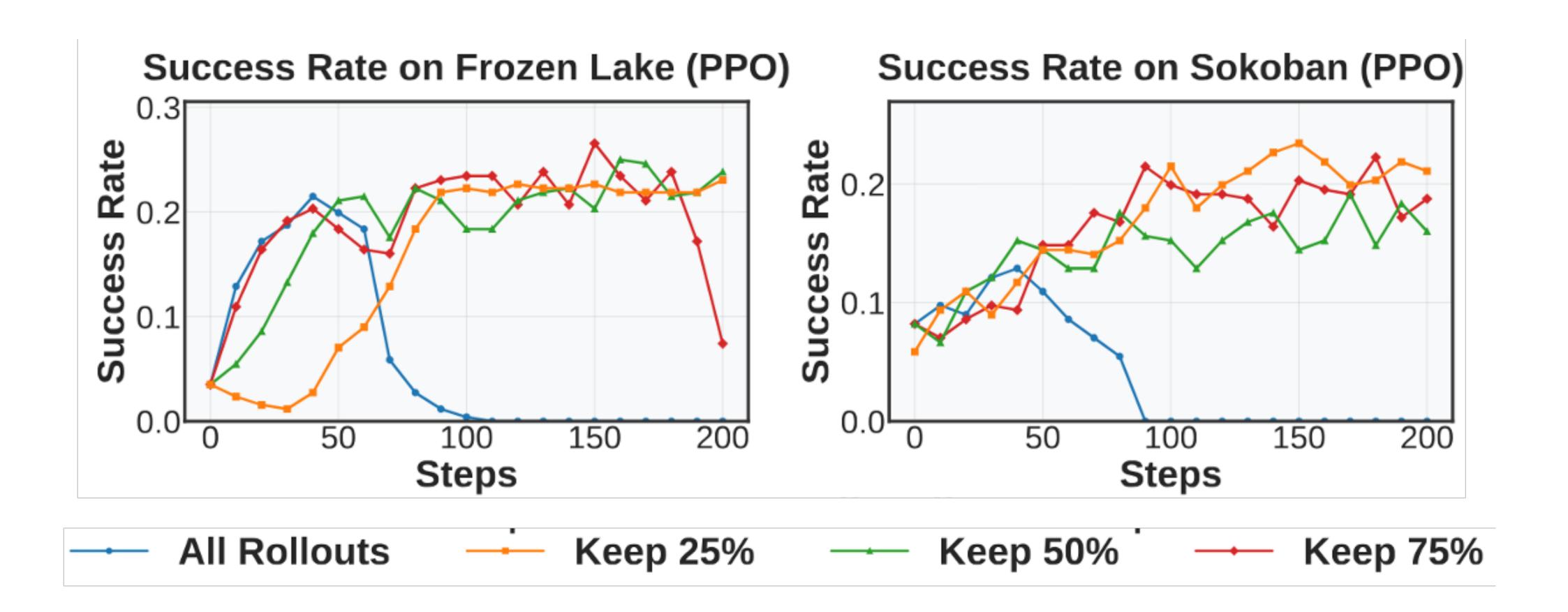
https://ragen-ai.github.io



High reward variance

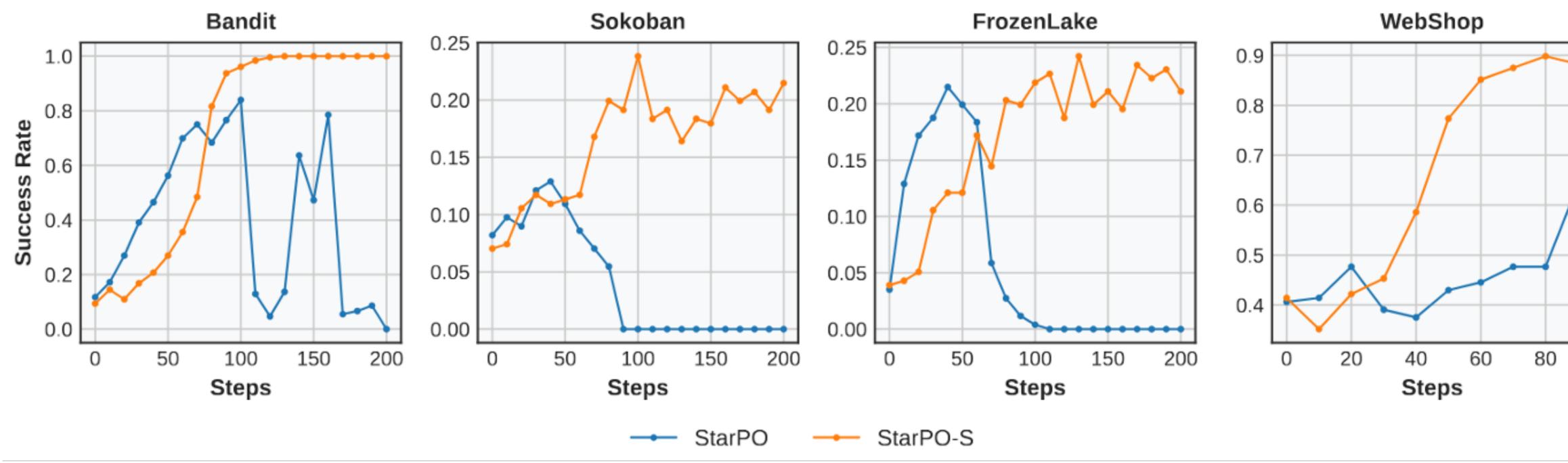
How to Avoid "Echo Trap"?

Model learns better from fewer but more diverse trajectories.



StarPO-S: Stabilizing multi-turn RL training with LLM Agents

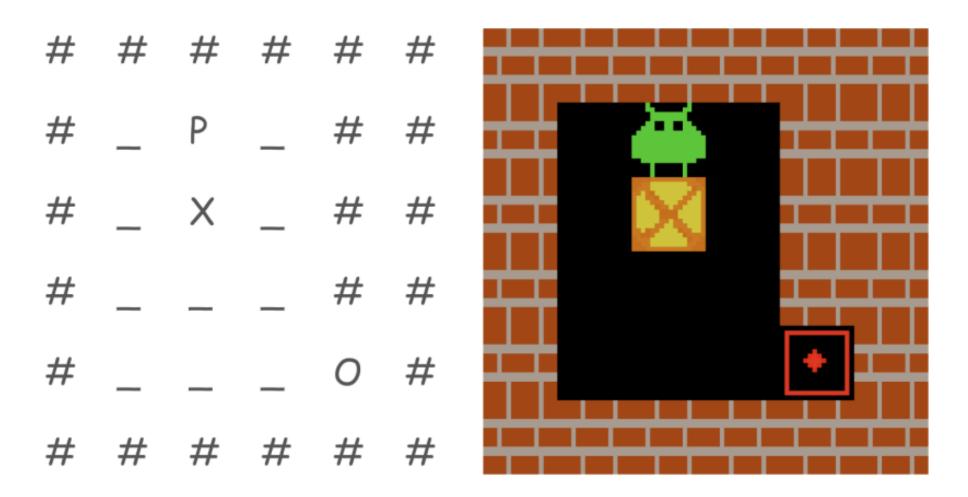
StarPO-s = StarPO + Filter by reward variance + Clipping + Removing KL constraint



See. Think. Act. Training Multimodal Agents with Reinforcement Learning

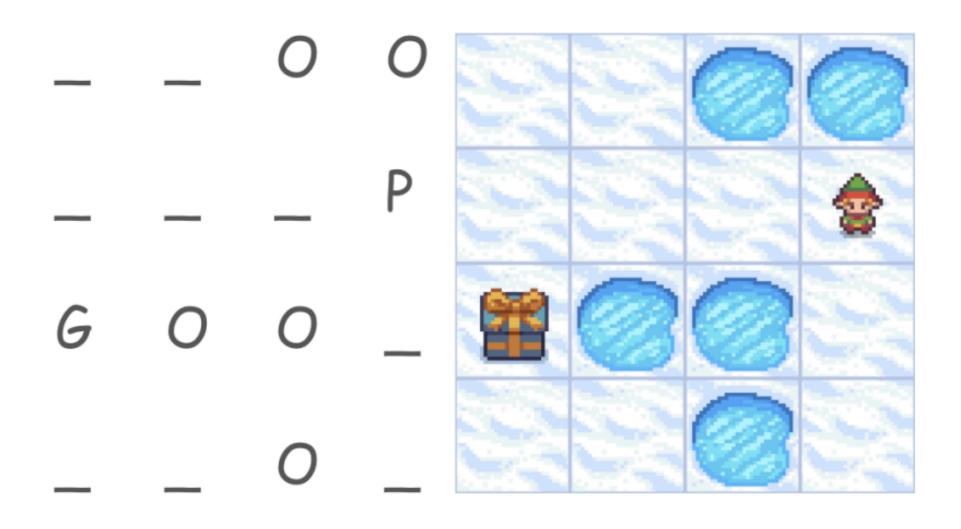
State Representation for LLM and VLM Agents

Symbolic representation make it easy for LLM agents while VLM agents must first solve vision just to play.



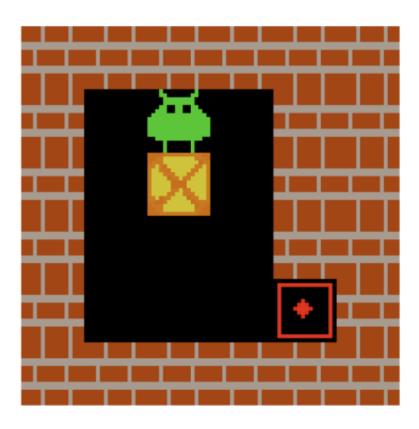
Sokoban

https://github.com/RAGEN-AI/VAGEN



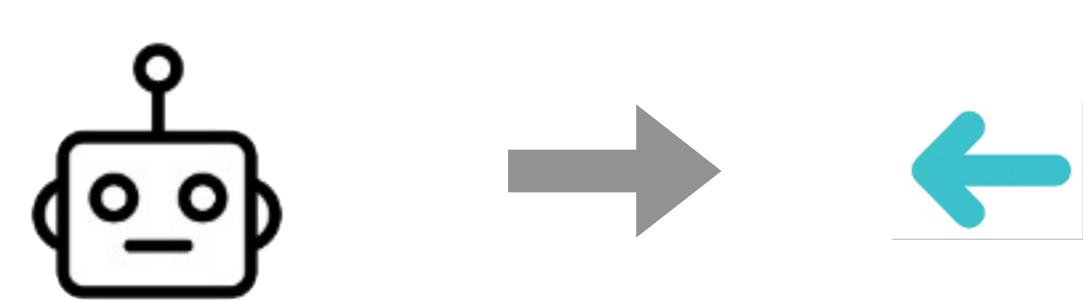
FrozenLake

How should VLMs reason about visual states? See VAGEN



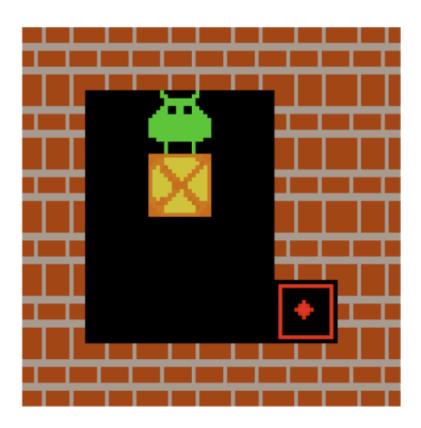
Visual State Input

https://github.com/RAGEN-AI/VAGEN



VLM

How should VLMs reason about visual states?

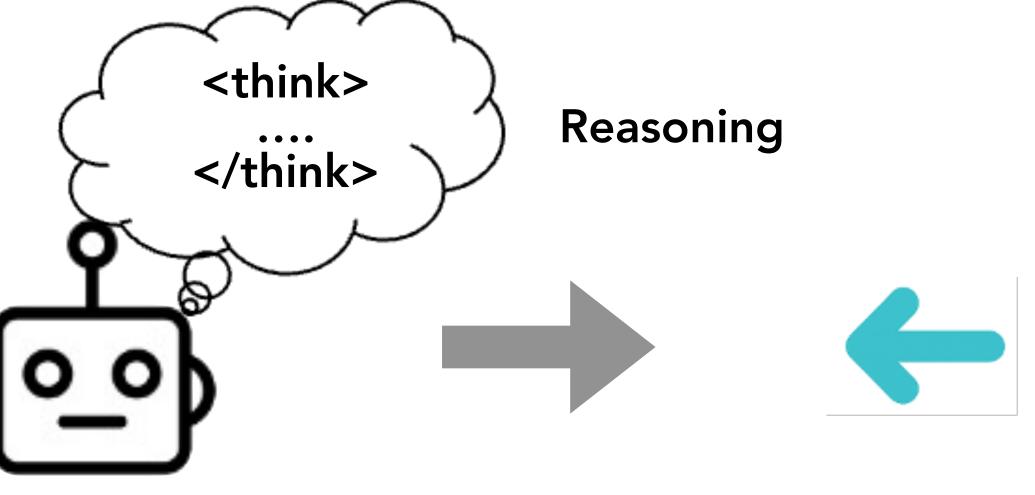


Visual State Input

Option 1 - Free-Think

<think>The box looks like it needs to go
over there. Maybe push it?</think>

https://github.com/RAGEN-AI/VAGEN



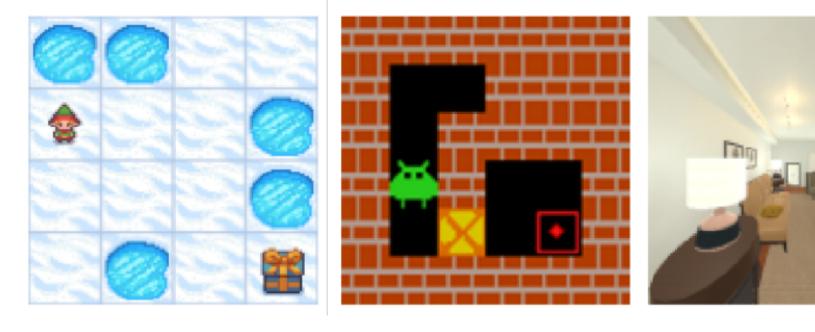
VLM

Action Output

Option 2 - Explicit State Verbalization

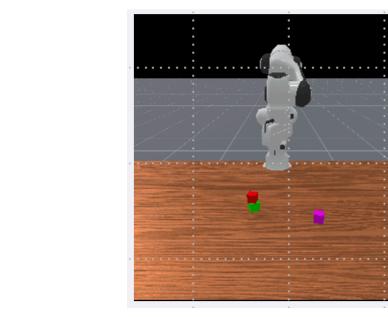
<think><observation>...</
observation>...<prediction>...</
prediction></think>

How should VLMs reason about visual states? See VAGEN

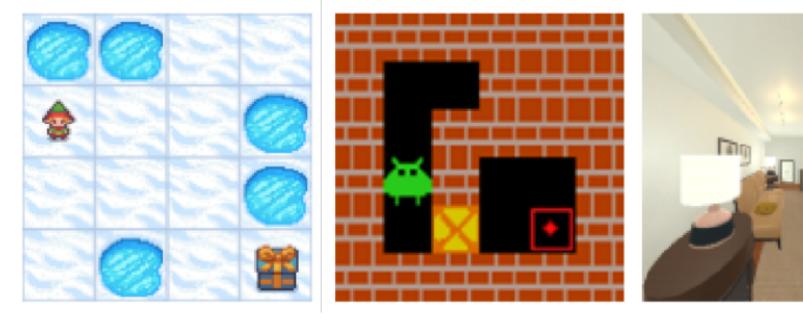


Model/Method	FrozenLake Sok		FrozenLake	FrozenLake	FrozenLake	FrozenLake	Sokoban	Navigation		PrimitiveSkill				SVG			Over
			1	Common	Average	Place	Stack	Drawer	Align	Average	Dino	DreamSim	Average	1			
VAGEN: Multi-Turn RL with Visual State Reasoning (Backbone: Qwen2.5-VL-3B)																	
Free-Think	0.39	0.43	0.63	0.63	0.63	1.00	0.63	0.00	1.00	0.66	0.90	0.64	0.77	0.5			
No-Think	0.34	0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88	0.60	0.74	0.2			
Grounding	0.35	0.15	0.78	0.75	0.77	0.00	0.00	0.00	0.00	0.00	0.92	0.67	0.80	0.4			
WorldModeling	0.53	0.44	0.67	0.59	0.63	1.00	0.63	0.88	1.00	0.88	0.89	0.63	0.76	0.6			
Grounding-WorldModeling	0.55	0.44	0.78	0.80	0.79	0.63	0.63	0.88	1.00	0.79	0.90	0.65	0.78	0.6			

https://github.com/RAGEN-AI/VAGEN



How should VLMs reason about visual states?

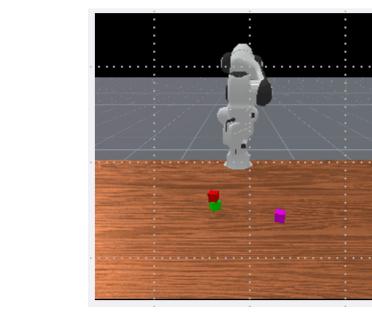


Model/Method	FrozenLake Sokob			Navigati	on		Primitiv	eSkill			SVG		Ove
			Base	Common	Average	Place Stac	ck Drawer	Align	Average	Dino l	DreamSim	Average	
VAGEN: Multi-Turn RL with Visual State Reasoning (Backbone: Qwen2.5-VL-3B)													
Free-Think	0.39	0.43	0.63	0.63	0.63	1.00 0.6	3 0.00	1.00	0.66	0.90	0.64	0.77	0.5
No-Think	0.34	0.29	0.00	0.00	0.00	0.00 0.0	0 0.00	0.00	0.00	0.88	0.60	0.74	0.2
Grounding	0.35	0.15	0.78	0.75	0.77	0.00 0.0	0.00	0.00	0.00	0.92	0.67	0.80	0.4
WorldModeling	0.53	0.44	0.67	0.59	0.63	1.00 0.6	3 0.88	1.00	0.88	0.89	0.63	0.76	0.6
Grounding-WorldModeling	0.55	0.44	0.78	0.80	0.79	0.63 0.6	3 0.88	1.00	0.79	0.90	0.65	0.78	0.6

Free-Think

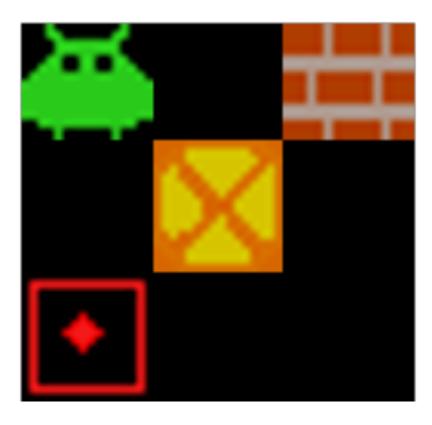
<think>I see the player and the box. The target is somewhere else. I should probably move the box towards it.</think>

<think><observation>Player at (2,1), Box at (2,2), Target at (4,2)</ observation>...<prediction>If Action=Push_Down, Box will be at (3,2), Player at (3,1)</prediction></think>



Explicit State Verbalization - Grounding+World Modeling

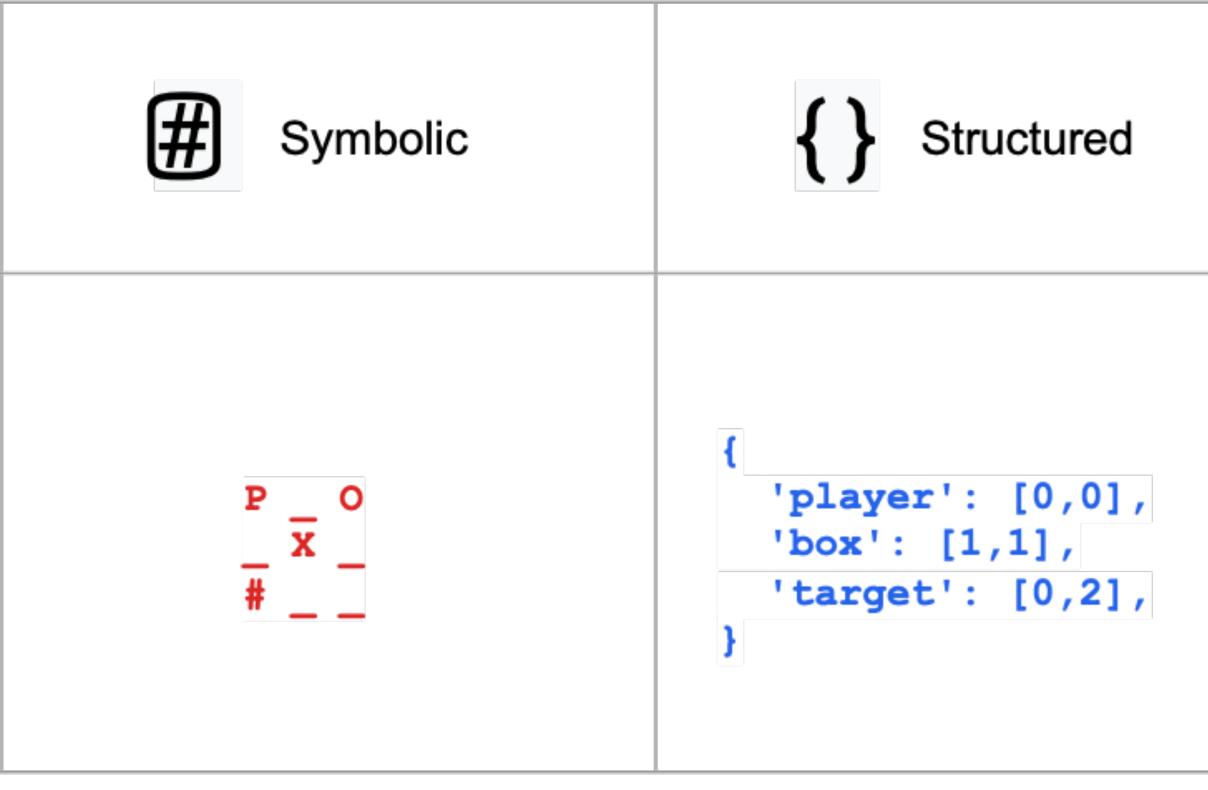
How should VLMs verbalize visual states?



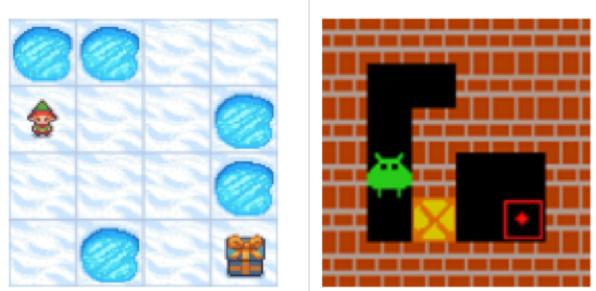
Visual State

"The player is at the upper-left, the box is to the right of the player, the target is below the player"

https://github.com/RAGEN-AI/VAGEN



How should VLMs verbalize visual states?

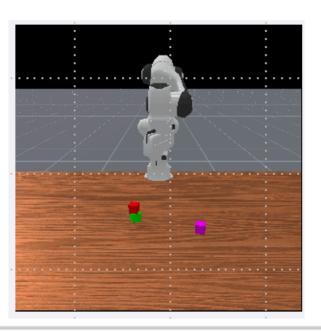


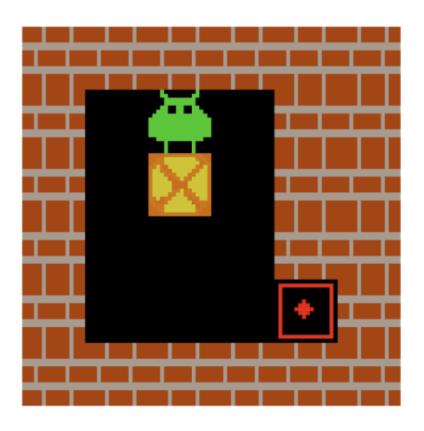
	-	
_		
	÷.	
	_	
	÷	
<u> </u>		
	*	
÷		
	+-	٠
+-	+-	+

Visual State Representation	FrozenLake	Sokoban	PrimitiveSkill						
visual state representation	I I UZUILIANU	JUNUJAII	Place	Stack	Drawer	Align	Average		
Natural-Lanaguage	0.55	0.44	0.63	0.63	0.88	1.00	0.79		
Structured	0.27	0.35	1.00	0.63	0.88	1.00	0.88		
Symbolic	0.30	0.27	_	_	_	_	_		

Optimal Visual State Representation is Task-Dependent.

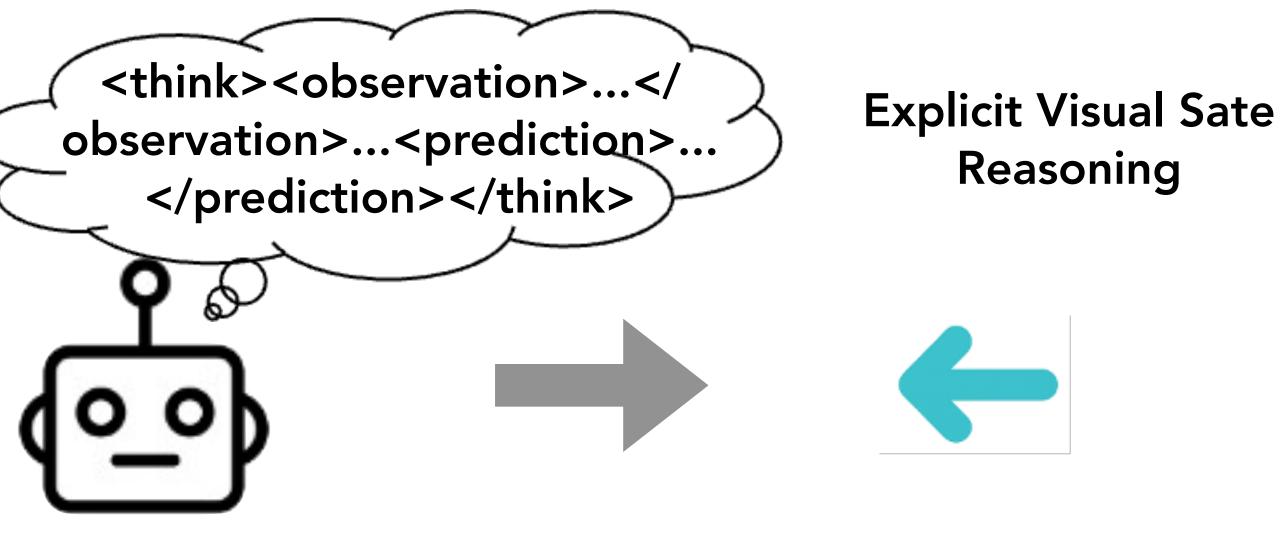
https://github.com/RAGEN-AI/VAGEN



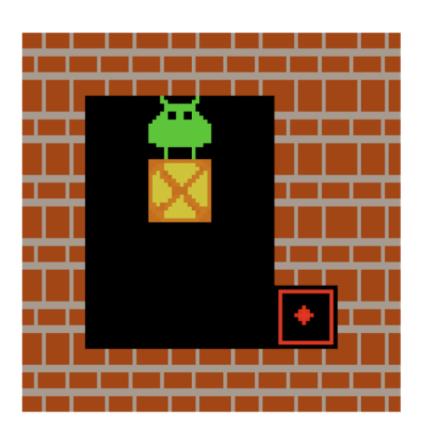


Visual State Input

https://github.com/RAGEN-AI/VAGEN

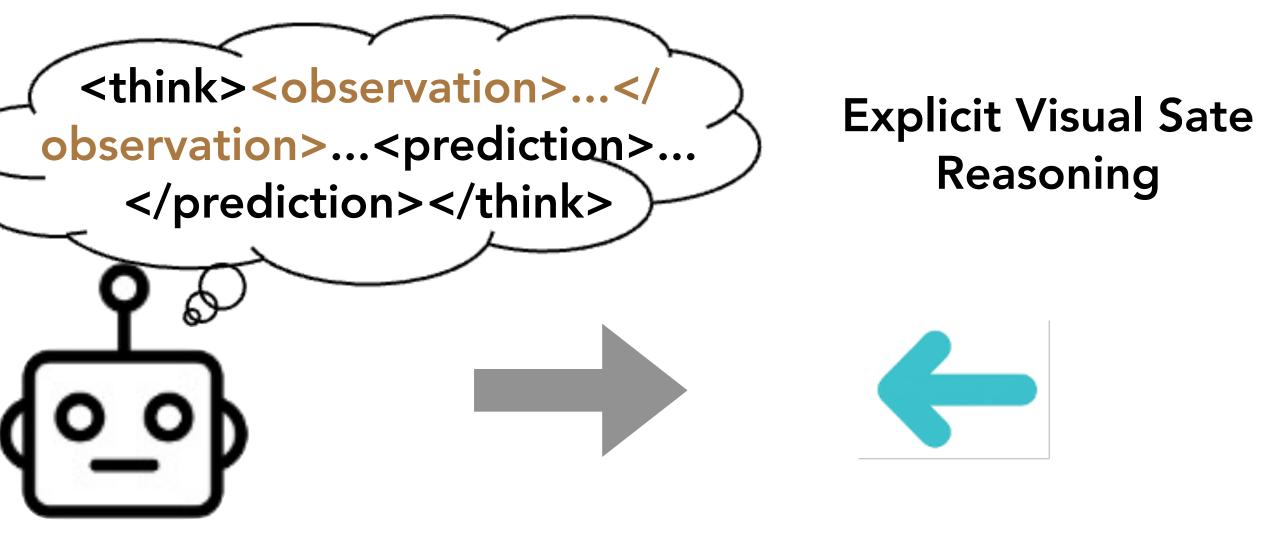


VLM

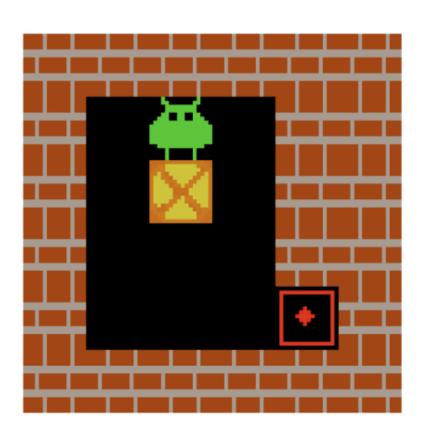


How to verify the correctness of current state verbalization?

https://github.com/RAGEN-AI/VAGEN



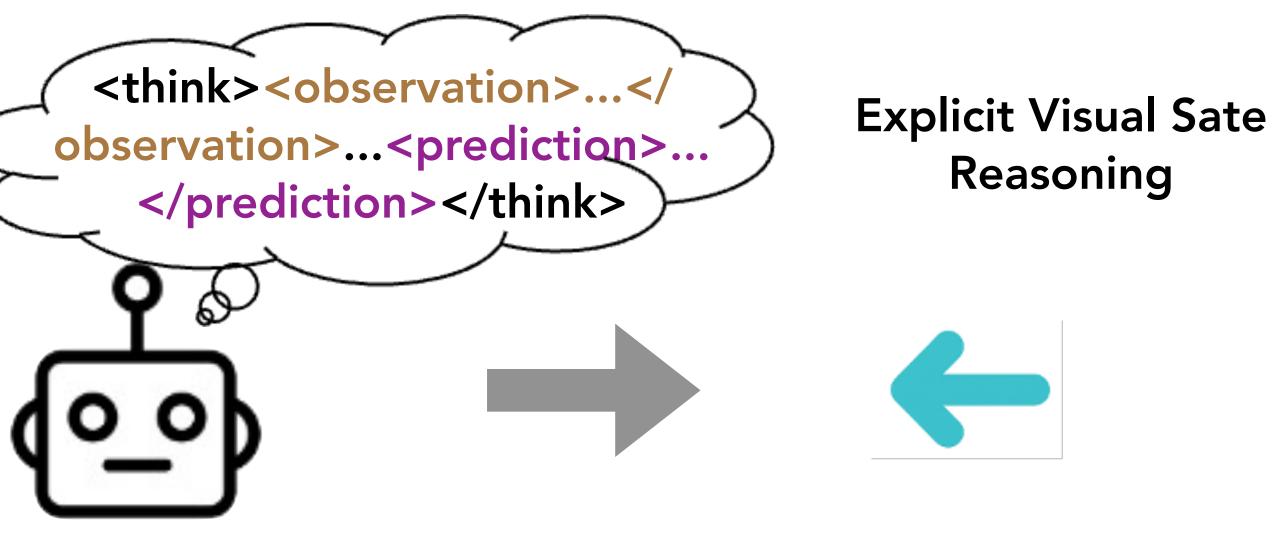
VLM



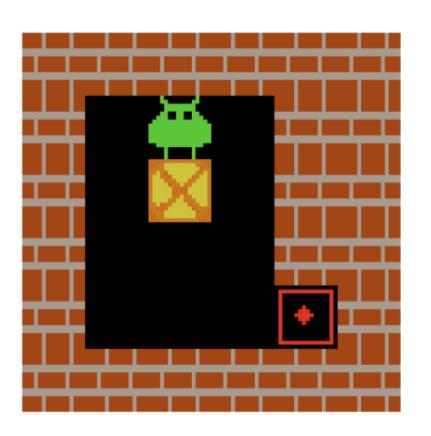
How to verify the correctness of current state verbalization?

How to check the plausibility of next state prediction?

https://github.com/RAGEN-AI/VAGEN



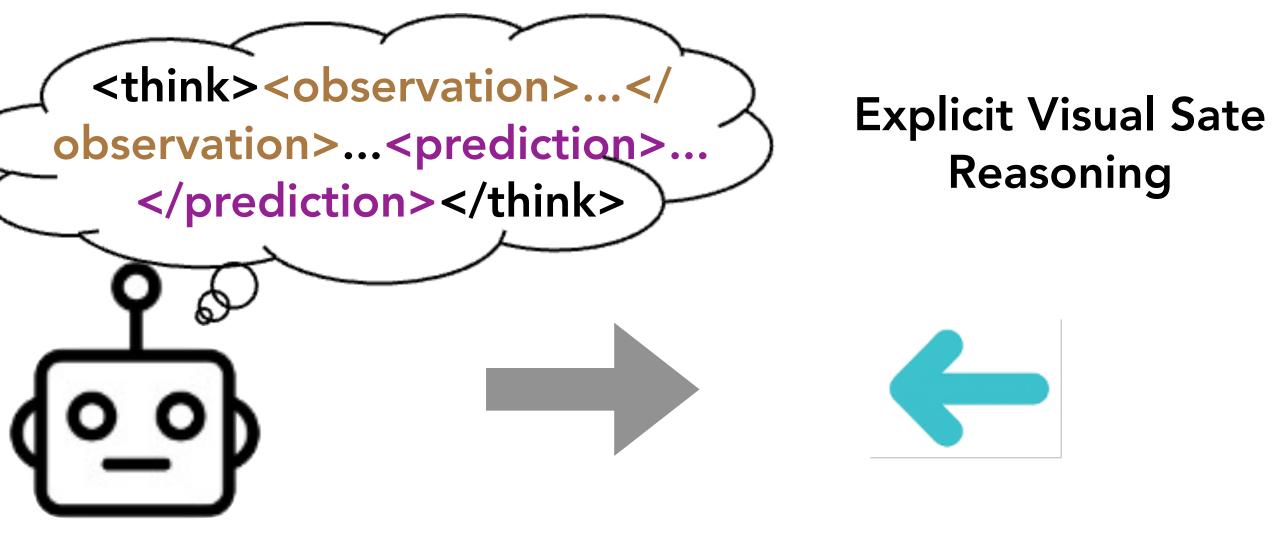
VLM



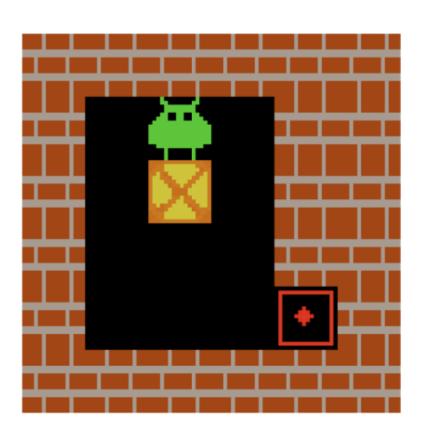
How to verify the correctness of current state verbalization?

How to check the plausibility of next state prediction?

How to assign reward to intermediate reasoning steps (current state+next state) vs. final action?



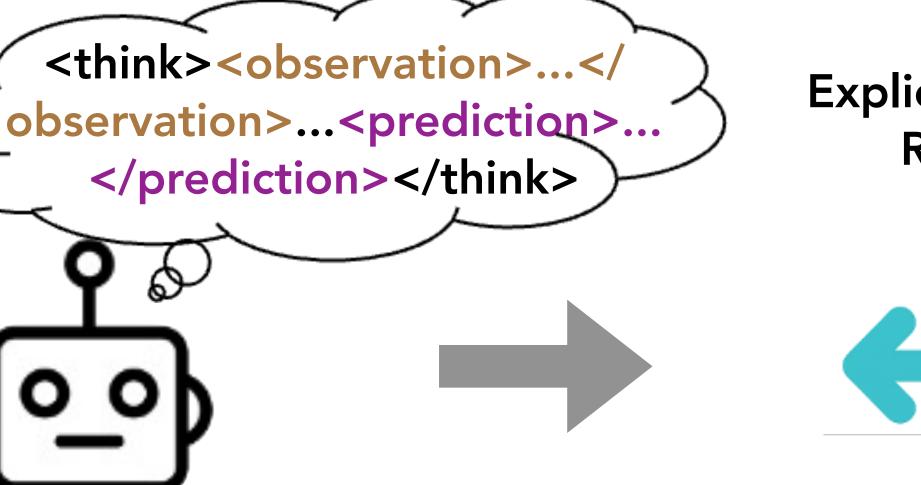
VLM



How to verify the correctness of current state verbalization?

How to check the plausibility of next state prediction?

How to assign reward to intermediate reasoning steps (current state+next state) vs. final action?



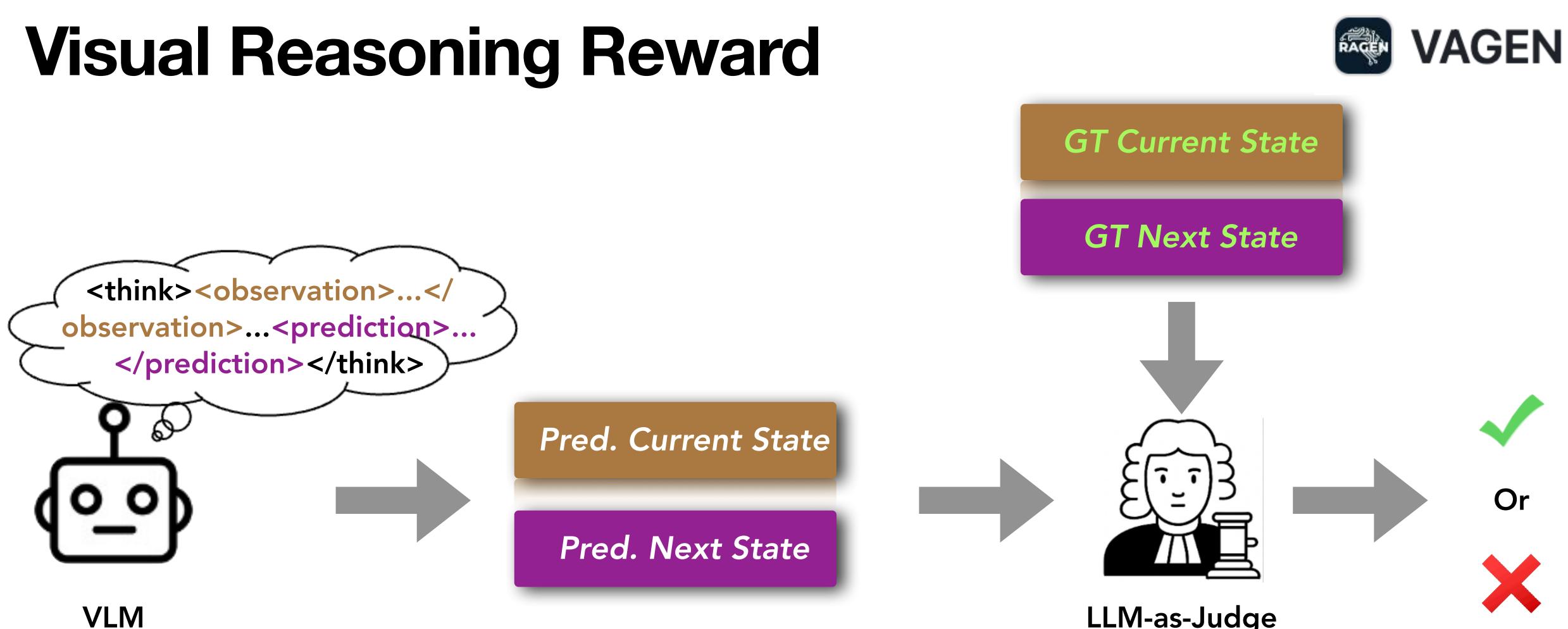
Explicit Visual Sate Reasoning

VLM

Action Output

Visual Reasoning Reward w/ LLM-as-judge

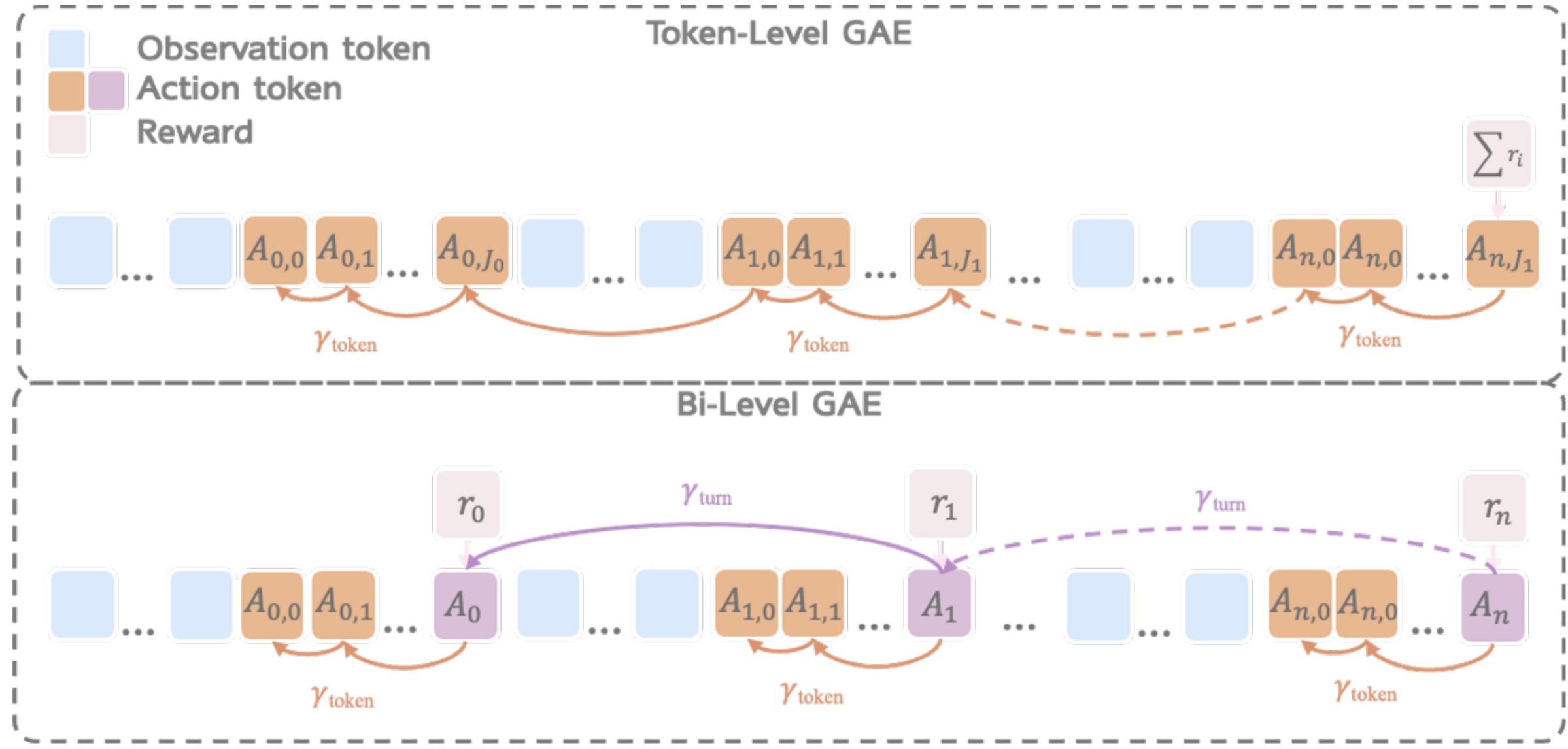
Hierarchical credit assignment w/ Bi-level GAE



https://github.com/RAGEN-AI/VAGEN

LLM-as-Judge

Bi-level General Advantage Estimation

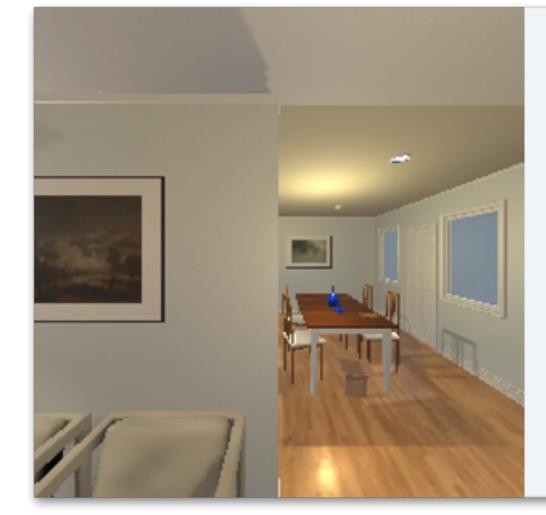


https://github.com/RAGEN-AI/VAGEN

Case Study

Step 1

VR-RL



<think> <observation>There is right.</observation>

<reasoning> First, I should move forward to get closer to the
table. Then, I can move to the right to be in front of the
table.</reasoning>

<prediction>l will to the forward-left of plate and dining
table.</prediction>
</think>
<answer>moveahead, moveright</answer>

Base RL

<think> <observation>l can see there is a pot on the stove.</observation>

<reasoning>To move closer to the pot, I should move forward
and then to the right./reasoning>

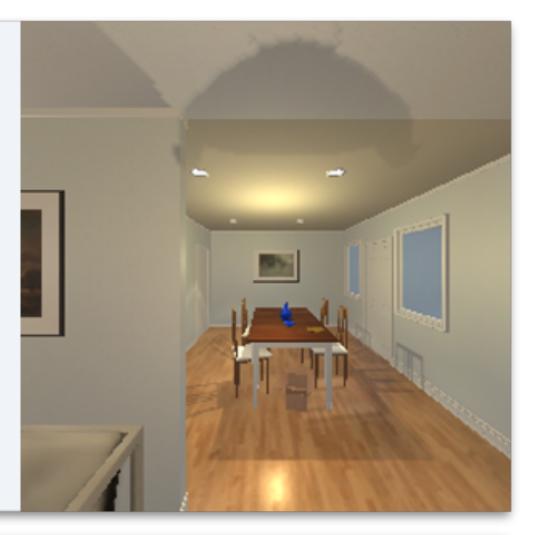
<prediction>l will closer to the pot.</prediction>
</think>
<answer>moveahead, moveahead, moveright</answer>

https://github.com/RAGEN-AI/VAGEN

VLM Output

<observation>There is a plate on the dining table to the

Step 2



"See". Think. Act. Training Language Agents with Reinforcement Learning

See. Think. Act. Training Multimodal Agents with Reinforcement Learning

See. Visual Think. Act.

